
CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3551 DISTRIBUTED COMPUTING

UNIT I

INTRODUCTION

Introduction: Definition-Relation to Computer System Components – Motivation – Message

Passing Systems versus Shared Memory Systems – Primitives for Distributed Communication –

Synchronous versus Asynchronous Executions – Design Issues and Challenges; A Model of

Distributed Computations: A Distributed Program – A Model of Distributed Executions – Models

of Communication Networks – Global State of a Distributed System

Introduction:

Definition

A distributed system is a collection of independent entities that cooperate to solve a

problem that cannot be individually solved.

A distributed system can be characterized as a collection of mostly autonomous processors

communicating over a communication network and having the following features:

• No common physical clock - This is an important assumption because it introduces

gives rise to the inherent asynchrony amongst the processors.

• No shared memory - This is a key feature that requires message-passing for

communication. This feature implies the absence of the common physical clock

• Geographical separation - The geographically wider apart that the processors are,

the more representative is the system of a distributed system.

• Autonomy and heterogeneity- The processors are “loosely coupled” in that they

have different speeds and each can be running a different operating system. They

are usually not part of a dedicated system, but cooperate with one another by

offering services or solving a problem jointly.

Relation to Computer System Components

A typical distributed system is shown in Figure 1.1. Each computer has a memory-

processing unit and the computers are connected by a communication network.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Figure 1.2 shows the relationships of the software components that run on each of the

computers and use the local operating system and network protocol stack for functioning. The

distributed software is also termed as middleware.

A distributed execution is the execution of processes across the distributed system to

collaboratively achieve a common goal. An execution is also sometimes termed a computation or

a run.

The distributed system uses a layered architecture to break down the complexity of system

design. The middleware is the distributed software that drives the distributed system, while

providing transparency of heterogeneity at the platform level.

Figure 1.2 schematically shows the interaction of this software with these system

components at each processor.

Assume that the middleware layer does not contain the traditional application layer

functions of the network protocol stack, such as http, mail, ftp, and telnet. Various primitive and

calls to functions defined in various libraries of the middleware layer are embedded in the user

program code.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

There exist several libraries to choose from to invoke primitives for the more common

functions such as reliable and ordered multicasting of the middleware layer.

There are several standards such as Object Management Group’s (OMG) common object

request broker architecture (CORBA), and the remote procedure call (RPC) mechanism.

The RPC mechanism conceptually works like a local procedure call, with the difference

that the procedure code may reside on a remote machine, and the RPC software sends a message

across the network to invoke the remote procedure. It then awaits a reply, after which the procedure

call completes from the perspective of the program that invoked it.

Currently deployed commercial versions of middleware often use CORBA, DCOM

(distributed component object model), Java, and RMI (remote method invocation) technologies.

The message-passing interface (MPI) developed in the research community is an example of an

interface for various communication functions.

Motivation

The motivation for using a distributed system is some or all of the following requirements.

1. Inherently distributed many applications such as money transfer in banking, or

reaching consensus among parties that are geographically distant, the computation

is inherently distributed.

2. Resource sharing: Resources such as peripherals, complete data sets in databases,

special libraries, as well as data (variable/files) cannot be fully replicated at all the

sites because it is often neither practical nor cost-effective. Further, they cannot be

placed at a single site because access to that site might prove to be a bottleneck.

Therefore, such resources are typically distributed across the system. For example,

distributed databases such as DB2 partition the data sets across several servers, in

addition to replicating them at a few sites for rapid access as well as reliability

3. Access to geographically remote data and resources: In many scenarios, the data

cannot be replicated at every site participating in the distributed execution because

it may be too large or too sensitive to be replicated. For example, payroll data within

a multinational corporation is both too large and too sensitive to be replicated at

every branch office/site.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

4. Enhanced reliability: A distributed system has the inherent potential to provide

increased reliability because of the possibility of replicating resources and

executions, as well as the reality that geographically distributed resources are not

likely to crash/malfunction at the same time under normal circumstances.

Reliability entails several aspects:

• availability, i.e., the resource should be accessible at all times;

• integrity, i.e., the value/state of the resource should be correct, in the face

of concurrent access from multiple processors, as per the semantics

expected by the application;

• fault-tolerance, i.e., the ability to recover from system failures

5. Increased performance/cost ratio: By resource sharing and accessing

geographically remote data and resources, the performance/cost ratio is increased.

Although higher throughput has not necessarily been the main objective behind

using a distributed system, nevertheless, any task can be partitioned across the

various computers in the distributed system.

6. Scalability: As the connect ed by a wide-area network, adding more processors does

not pose a direct bottleneck for the communication

network.

7. Modularity and incremental expandability: Heterogeneous processors may be

easily added into the system without affecting the performance, as long as those

processors are running the same middleware algorithms. Similarly, existing

processors may be easily replaced by other processors.

Message Passing Systems versus Shared Memory Systems

Shared memory systems are those in which there is a (common) shared address space

throughout the system. Communication among processors takes place via shared data variables,

and control variables for synchronization among the processors. Semaphores and monitors that

were originally designed for shared memory uniprocessors and multiprocessors are examples of

how synchronization can be achieved in shared memory systems.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

All multicomputer (NUMA as well as message-passing) systems that do not have a shared

address space provided by the underlying architecture and hardware necessarily communicate by

message passing. Conceptually, programmers find it easier to program using shared memory than

by message passing.

For this and several other reasons that we examine later, the abstraction called shared

memory is sometimes provided to simulate a shared address space. For a distributed system, this

abstraction is called distributed shared memory. Implementing this abstraction has a certain cost

but it simplifies the task of the application programmer. There also exists a well-known folklore

result that communication via message-passing can be simulated by communication via shared

memory and vice-versa. Therefore, the two paradigms are equivalent.

Emulating message-passing on a shared memory system (MP →SM)

The shared address space can be partitioned into disjoint parts, one part being assigned to

each processor. “Send” and “receive” operations can be implemented by writing to and reading

from the destination/sender processor’s address space, respectively.
CNCET

Specifically, a separate location can be reserved as the mailbox for each ordered pair of

processes. A Pi–Pj message-passing can be emulated by a write by Pi to the mailbox and then a

read by Pj from the mailbox. In the simplest case, these mailboxes can be assumed to have

unbounded size. The write and read operations need to be controlled using synchronization

primitives to inform the receiver/sender after the data has been sent/received.

Emulating shared memory on a message-passing system (SM →MP)

This involves the use of “send” and “receive” operations for “write” and “read” operations.

Each shared location can be modeled as a separate process; “write” to a shared location is emulated

by sending an update message to the corresponding owner process; a “read” to a shared location

is emulated by sending a query message to the owner process. As accessing another processor’s

memory requires send and receive operations, this emulation is expensive.

http://www.enggtree.com/

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Thus, the latencies involved in read and write operations may be high even when using

shared memory emulation because the read and write operations are implemented by using

network-wide communication under the covers.

In a MIMD message-passing multicomputer system, each “processor” may be a tightly

coupled multiprocessor system with shared memory. Within the multiprocessor system, the

processors communicate via shared memory. Between two computers, the communication is by

message passing. As message-passing systems are more common and more suited for wide-area

distributed systems, we will consider message-passing systems more extensively than we consider

shared memory systems.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Primitives for distributed communication

Blocking/non-blocking, synchronous/asynchronous primitives

Message send and message receive communication primitives are denoted Send() and

Receive(), respectively.

A Send primitive has at least two parameters – the destination, and the buffer in the user

space, containing the data to be sent. Similarly, a Receive primitive has at least two parameters –

the source from which the data is to be received (this could be a wildcard), and the user buffer into

which the data is to be received.

There are two ways of sending data when the Send primitive is invoked – the buffered

option and the unbuffered option.

The buffered option which is the standard option copies the data from the user buffer to the

kernel buffer. The data later gets copied from the kernel buffer onto the network. In the unbuffered

option, the data gets copied directly from the user buffer onto the network.

The following are some definitions of blocking/non-blocking and synchronous/

asynchronous primitives.

• Synchronous primitives: A Send or a Receive primitive is synchronous if both the Send()

and Receive() handshake with each other. The processing for the Send primitive completes

only after the invoking processor learns that the other corresponding Receive primitive has

also been invoked and that the receive operation has been completed. The processing for

the Receive primitive completes when the data to be received is copied into the receiver’s

user buffer.

• Asynchronous primitives: A Send primitive is said to be asynchronous if control returns

back to the invoking process after the data item to be sent has been copied out of the user-

specified buffer. It does not make sense to define asynchronous Receive primitives.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

• Blocking primitives: A primitive is blocking if control returns to the invoking process

after the processing for the primitive (whether in synchronous or asynchronous mode)

completes.

• Non-blocking primitives: A primitive is non-blocking if control returns back to the

invoking process immediately after invocation, even though the operation has not

completed. For a non-blocking Send, control returns to the process even before the data is

copied out of the user buffer. For a non-blocking Receive, control returns to the process

even before the data may have arrived from the sender.

Fig. A non-blocking send primitive.

The code for a non-blocking Send would look as shown in Figure. First, it can keep

checking (in a loop or periodically) if the handle has been flagged or posted. Second, it can issue
a Wait with a list of handles as parameters. The Wait call usually blocks until one of the parameter

handles is posted.

If at the time that Wait() is issued, the processing for the primitive (whether synchronous

or asynchronous) has completed, the Wait returns immediately. The completion of the processing

of the primitive is detectable by checking the value of handlek. If the processing of the primitive

has not completed, the Wait blocks and waits for a signal to wake it up. When the processing for

the primitive completes, the communication subsystem software sets the value of handlek and

wakes up (signals) any process with a Wait call blocked on this handlek This is called posting the

completion of the operation.

There are therefore four versions of the Send primitive – synchronous blocking,

synchronous non-blocking, asynchronous blocking, and asynchronous non-blocking. For the

Receive primitive, there are the blocking synchronous and non-blocking synchronous versions.

These versions of the primitives are illustrated in Figure using a timing diagram. Here the timelines

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

are shown for each process: (1) for the process execution, (2) for the user buffer from/to which

data is sent/received, and (3) for the kernel/communication subsystem.

Figure: Blocking/ non-blocking and synchronous/asynchronous primitives.

Process Pi is sending and process Pj is receiving.

(a) Blocking synchronous Send and blockin (synchronous) Receive.

(b) Non-blocking synchronous Send and nonblocking (synchronous) Receive.

(c) Blocking asynchronous Send.

(d) Non-blocking asynchronous Send.

Processor synchrony

Processor synchrony indicates that all the processors execute in lock-step with their clocks

synchronized. As this synchrony is not attainable in a distributed system, what is more generally

indicated is that for a large granularity of code, usually termed as a step, the processors are

synchronized. This abstraction is implemented using some form of barrier synchronization to

ensure that no processor begins executing the next step of code until all the processors have

completed executing the previous steps of code assigned to each of the processors.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Libraries and standards

There exists a wide range of primitives for message-passing. Many commercial software

products (banking, payroll, etc., applications) use proprietary primitive libraries supplied with the

software marketed by the vendors (e.g., the IBM CICS software which has a very widely installed

customer base worldwide uses its own primitives).

The message-passing interface (MPI) library and the PVM (parallel virtual machine)

library are used largely by the scientific community, but other alternative libraries exist.

Commercial software is often written using the remote procedure calls (RPC) mechanism

in which procedures that potentially reside across the network are invoked transparently to the

user, in the same manner that a local procedure is invoked.

Synchronous versus Asynchronous Executions

An asynchronous execution is an execution in which,

(i) there is no processor synchrony and there is no bound on the drift rate of processor

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Figure: An example of an asynchronous execution in a message-passing system

A synchronous execution is an execution in which

(i) processors are synchronized and the clock drift rate between any two processors is

bounded,

(ii) message delivery (transmission + delivery) times are such that they occur in one

logical step or round,

(iii) there is a known upper bound on the time taken by a process to execute a step.

An example of a synchronous execution with four processes P0 to P3 is shown in Figure.

The arrows denote the messages.

Figure: An example of a synchronous execution in a message-passing system

The synchronous execution is an abstraction that needs to be provided to the programs.

When implementing this abstraction, observe that the fewer the steps or “synchronizations” of the

processors, the lower the delays and costs. If processors are allowed to have an asynchronous

execution for a period of time and then they synchronize, then the granularity of the synchrony is

coarse. This is really a virtually synchronous execution, and the abstraction is sometimes termed

as virtual synchrony.

Ideally, many programs want the processes to execute a series of instructions in rounds

(also termed as steps or phases) asynchronously, with the requirement that after each

round/step/phase, all the processes should be synchronized and all messages sent should be

delivered. This is the commonly understood notion of a synchronous execution. Within each

round/phase/step, there may be a finite and bounded number of sequential sub-rounds (or

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

subphases or sub-steps) that processes execute. Each sub-round is assumed to send at most one

message per process; hence the message(s) sent will reach in a single message hop.

Emulating an asynchronous system by a synchronous system (A→S)

An asynchronous program (written for an asynchronous system) can be emulated on a

synchronous system fairly trivially as the synchronous system is a special case of an asynchronous

system – all communication finishes within the same round in which it is initiated.

Emulating a synchronous system by an asynchronous system (S →A)

A synchronous program (written for a synchronous system) can be emulated on an

asynchronous system using a tool called synchronizer.

Emulations

Figure: Emulations among the principal system classes in a failure free system.

There are four broad classes of programs, as shown in Figure. Using the emulations shown,

any class can be emulated by any other. If system A can be emulated by system B denoted A/B,

and if a problem is not solvable in B, then it is also not solvable in A. Likewise, if a problem is

solvable in A, it is also solvable in B. Hence, in a sense, all four classes are equivalent in terms of

“computability” – what can and cannot be computed – in failure-free systems.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Design issues and challenges

Distributed systems challenges from a system perspective

a. Communication: This task involves designing appropriate mechanisms for

communication among the processes in the network. Some example mechanisms are:

remote procedure call (RPC), remote object invocation cation (ROI), message-oriented

communication versus stream-oriented communication.

b. Processes: Some of the issues involved are: management of processes and threads at

clients/servers; code migration; and the design of software and mobile agents.

c. Naming: Devising easy to use and robust schemes for names, identifiers, and addresses is

essential for locating resources and processes in a transparent and scalable manner. Naming

in mobile systems provides additional challenges because naming cannot easily be tied to

any static geographical topology.

d. Synchronization: Mechanisms for synchronization or coordination among the processes

are essential. Mutual exclusion is the classical example of synchronization, but many other

forms of synchronization, such as leader election are also needed.

e. Data storage and access: and implicitly for accessing the data in a fast and scalable

manner across the network are important for efficiency.

f. Consistency and replication: To avoid bottlenecks, to provide fast access to data, and to

provide scalability, replication of data objects is highly desirable.

g. Fault tolerance: Fault tolerance requires maintaining correct and efficient operation in

spite of any failures of links, nodes, and processes.

h. Security: Distributed systems security involves various aspects of cryptography, secure

channels, access control, key management – generation and distribution, authorization, and

secure group management.

i. Applications Programming Interface (API) and transparency: The API for

communication and other specialized services is important for the ease of use and wider

adoption of the distributed systems services by non-technical users.

Transparency deals with hiding the implementation policies from the user, and

can be classified as follows.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

a. Access Transparency hides differences in data representation on different systems

and provides uniform operations to access system resources.

b. Location transparency makes the locations of resources transparent to the users.

c. Migration transparency allows relocating resources without changing names.

d. The ability to relocate the resources as they are being accessed is relocation

transparency.

e. Replication transparency does not let the user become aware of any replication.

f. Concurrency transparency deals with masking the concurrent use of shared

resources for the user.

g. Failure transparency refers to the system being reliable and fault-tolerant.

j. Scalability and modularity: The algorithms, data (objects), and services must be as

distributed as possible. Various techniques such as replication, caching and cache

management, and asynchronous processing help to achieve scalability.

Algorithmic challenges in distributed computing

a. Designing useful execution models and frameworks

The interleaving model two widely adopted models of distributed system executions. They have

proved to be particularly useful for operational reasoning and the design of distributed

algorithms.

b. Dynamic distributed graph algorithms and distributed routing algorithms

The distributed system is modeled as a distributed graph, and the graph algorithms form

the building blocks for a large number of higher level communication, data dissemination,

object location, and object search functions.

c. Time and global state in a distributed system

The processes in the system are spread across three-dimensional physical space. Another

dimension, time, has to be superimposed uniformly across space. The challenges pertain to

providing accurate physical time, and to providing a variant of time, called logical time.

d. Synchronization/coordination mechanisms

The processes must be allowed to execute concurrently, except when they need to

synchronize to exchange information, i.e., communicate about shared data.

Synchronization is essential for the distributed processes to overcome the limited

observation of the system state from the viewpoint of any one process. Here are some

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

examples of problems requiring synchronization. They are Physical clock synchronization,

Leader election, Mutual exclusion, Deadlock detection and resolution, Termination

detection and Garbage collection.

e. Group communication, multicast, and ordered message delivery

A group is a collection of processes that share a common context and collaborate on a

common task within an application domain. Specific algorithms need to be designed to

enable efficient group communication and group management wherein processes can join

and leave groups dynamically, or even fail.

f. Monitoring distributed events and predicates

Predicates defined on program variables that are local to different processes are used for

specifying conditions on the global system state, and are useful for applications such as

debugging, sensing the environment, and in industrial process control.

g. Distributed program design and verification tools

Methodically designed and verifiably correct programs can greatly reduce the overhead of

software design, debugging, and engineering. Designing mechanisms to achieve these

design and verification goals.

h. Debugging distributed programs

Debugging sequential programs is hard; debugging distributed programs is that much

harder because of the concurrency in actions and the ensuing uncertainty due to the large

number of possible executions defined by the interleaved concurrent actions.

i. Data replication, consistency models, and caching

Fast access to data and other resources requires them to be replicated in the distributed

system. Managing such replicas in the face of updates introduces the problems of ensuring

consistency among the replicas and cached copies.

j. World Wide Web design – caching, searching, scheduling

The Web is an example of a widespread distributed system with a direct interface to the

end user, wherein the operations are predominantly read-intensive on most objects.

k. Distributed shared memory abstraction

A shared memory abstraction simplifies the task of the programmer because he or she has

to deal only with read and write operations, and no message communication primitives.

However, under the covers in the middleware layer, the abstraction of a shared address

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

space has to be implemented by using message-passing. Hence, in terms of overheads, the

shared memory abstraction is not less expensive.

l. Reliable and fault-tolerant distributed systems

A reliable and fault-tolerant environment has multiple requirements and aspects, and these

can be addressed using various strategies. They are Consensus algorithms, Replication and

replica management, Voting and quorum systems, Distributed databases and distributed

commit, Self-stabilizing systems, Checkpointing and recovery algorithms, Failure

detectors.

m. Load balancing

The goal of load balancing is to gain higher throughput, and reduce the userperceived

latency. The following are some forms of load balancing: Data migration, Computation

migration and Distributed scheduling.

n. Real-time scheduling

Real-time scheduling is important for mission-critical applications, to accomplish the task

execution on schedule. The problem becomes more challenging in a distributed system

where a global view of the On-line or dynamic changes to the schedule are also harder to
make without a global view of the state.

o. Performance

Although high throughput is not the primary goal of using a distributed system, achieving

good performance is important. The following are some example issues arise in

determining the performance: Metrics and Measurement methods/tools

Applications of distributed computing and newer challenges

• Mobile systems

Mobile systems typically use wireless communication which is based on

electromagnetic waves and utilizes a shared broadcast medium. Hence, the characteristics

of communication are different; many issues such as range of transmission and power of

transmission come into play, besides various engineering issues such as battery power

conservation, interfacing with the wired Internet, signal processing and interference

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

• Sensor networks

A sensor is a processor with an electro-mechanical interface that is capable of

sensing physical parameters, such as temperature, velocity, pressure, humidity, and

chemicals. Recent developments in cost-effective hardware technology have made it

possible to deploy very large (of the order of 106 or higher) low-cost sensors.

• Ubiquitous or pervasive computing

Ubiquitous systems represent a class of computing where the processors embedded

in and seamlessly pervading through the environment perform application functions in the

background, much like in sci-fi movies. The intelligent home, and the smart workplace are

some example of ubiquitous environments currently under intense research and

development.

• Peer-to-peer computing

Peer-to-peer (P2P) computing represents computing over an application layer

network wherein all interactions among the processors are at a “peer” level, without any

hierarchy among the processors. Thus, all processors are equal and play a symmetric role

in the computation.

• Publish-subscribe, content distribution, and multimedia

In a dynamic environment where the information constantly fluctuates (varying

stock prices is a typical example), there needs to be:

(i) an efficient mechanism for distributing this information (publish),

(ii) an efficient mechanism to allow end users to indicate interest in receiving

specific kinds of information (subscribe)

(iii) an efficient mechanism for aggregating large volumes of published

information and filtering it as per the user’s subscription filter

• Distributed agents

Agents are software processes or robots that can move around the system to do

specific tasks for which they are specially programmed. The name “agent” derives from

the fact that the agents do work on behalf of some broader objective.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

• Distributed data mining

Data mining algorithms examine large amounts of data to detect patterns and trends

in the data, to mine or extract useful information. A traditional example is: examining the

purchasing patterns of customers in order to profile the customers and enhance the efficacy

of directed marketing schemes.

• Grid computing

Many challenges in making grid computing a reality include: scheduling jobs in

such a distributed environment, a framework for implementing quality of service and real-

time guarantees, and, of course, security of individual machines as well as of jobs being

executed in this setting.

• Security in distributed systems

The traditional challenges of security in a distributed setting include: confidentiality

(ensuring that only authorized processes can access certain information),

authentication (ensuring the source of received information and the identity of the sending

process), and availability (maintaining allowed access to services despite malicious

actions.

Model of Distributed Computations A Distributed Program

A distributed program is composed of a set of n asynchronous processes p1, p2…, pi… ,pn

that communicate by message passing over the communication network. Without loss of

generality, we assume that each process is running on a different processor. The processes do not

share a global memory and communicate solely by passing messages.

Let Cij denote the channel from process pi to process pj and let mij denote a message sent

by pi to pj . The communication delay is finite and unpredictable. Also, these processes do not

share a global clock that is instantaneously accessible to these processes. Process execution and

message transfer are asynchronous – a process may execute an action spontaneously and a process

sending a message does not wait for the delivery of the message to be complete.

The global state of a distributed computation is composed of the states of the processes and

the communication channels. The state of a process is characterized by the state of its local memory

and depends upon the context.

A model of distributed executions

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

The execution of a process consists of a sequential execution of its actions. The actions are

atomic and the actions of a process are modeled as three types of events, namely, internal events,

message send events, and message receive events. Let ex
i denote the xth event at process pi.

Subscripts and/or superscripts will be dropped when they are irrelevant or are clear from the

context. For a message m, let send(m) and rec(m) denote its send and receive events, respectively.

The occurrence of events changes the states of respective processes and channels, thus

causing transitions in the global system state. An internal event changes the state of the process at

which it occurs. A send event (or a receive event) changes the state of the process that sends (or

receives) the message and the state of the channel on which the message is sent (or received). An

internal event only affects the process at which it occurs.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

The events at a process are linearly ordered by their order of occurrence. The execution of

process pi produces a sequence of events e1, e2 ,.....e x ,....e x+1,...and it is denoted by Hi,
i i i i

where hi is the set of events produced by pi and binary relation →i defines a linear order on these

events. Relation → i expresses causal dependencies among the events of pi.

The send and the receive events signify the flow of information between processes and

establish causal dependency from the sender process to the receiver process. A relation →msg that

captures the causal dependency due to message exchange, is defined as follows. For every message

m that is exchanged between two processes, we have

send(m) →msg rec(m)

Figure: The space–time diagram of a distributed execution.

Relation →msg defines causal dependencies between the pairs of corresponding send and

receive events. The evolution of a distributed execution is depicted by a space–time diagram.

Figure shows the space–time diagram of a distributed execution involving three processes. A

horizontal line represents the progress of the process; a dot indicates an event; a slant arrow

indicates a message transfer.

Generally, the execution of an event takes a finite amount of time; however, since we

assume that an event execution is atomic (hence, indivisible and instantaneous), it is justified to

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

denote it as a dot on a process line. In this figure, for process p1, the second event is a message

send event, the third event is an internal event, and the fourth event is a message receive event.

Causal precedence relation

The execution of a distributed application results in a set of distributed events produced by

the processes. Let H =⋃ihi denote the set of events executed in a distributed computation. Next,

we define a binary relation on the set H, denoted as →, that expresses causal dependencies between

events in the distributed execution.

The causal precedence relation induces an irreflexive partial order on the events of a

distributed computation that is denoted as H=(H, →).

For any two events ei and ej , ei ej denotes the fact that event ej does not directly or

transitively dependent on event ei. That is, event ei does not causally affect event ej . Event ej is

not aware of the execution of ei or any event executed after ei on the same process.

Logical vs. physical concurrency

In a distributed computation, two events are logically concurrent if and only if they do not

causally affect each other. Physical concurrency, on the other hand, has a connotation that the

events occur at the same instant in physical time. Note that two or more events may be logically

concurrent even though they do not occur at the same instant in physical time.

Whether a set of logically concurrent events coincide in the physical time or in what order

in the physical time they occur does not change the outcome of the computation. Therefore, even

though a set of logically concurrent events may not have occurred at the same instant in physical

time, for all practical and theoretical purposes, we can assume that these events occured at the

same instant in physical time.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Models of communication networks

There are several models of the service provided by communication networks, namely,

FIFO (first-in, first-out), non-FIFO, and causal ordering. In the FIFO model, each channel acts as

a first-in first-out message queue and thus, message ordering is preserved by a channel. In the non-

FIFO model, a channel acts like a set in which the sender process adds messages and the receiver

process removes messages from it in a random order.

A system that supports the causal ordering model satisfies the following property:

That is, this property ensures that causally related messages destined to the same

destination are delivered in an order that is consistent with their causality relation. Causally ordered

delivery of messages implies FIFO message delivery. Furthermore, note that CO ⊂ FIFO ⊂ Non-

FIFO..Generally, it considerably simplifies the design of distributed algorithms because it

provides a built-in synchronization. For example, in replicated database systems, it is important

that every process responsible for updating a replica receives the updates in the same order to

maintain database consistency

Global state of a distributed system

The global state of a distributed system is a collection of the local states of its components,

namely, the processes and the communication channels. The state of a process at any time is

defined by the contents of processor registers, stacks, local memory, etc. and depends on the local

context of the distributed application. The state of a channel is given by the set of messages in

transit in the channel.

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

i

Global state

The global state of a distributed system is a collection of the local states of the processes

and the channels. Notationally, the global state GS is defined as,

For a global snapshot to be meaningful, the states of all the components of the distributed

system must be recorded at the same instant. This will be possible if the local clocks at processes

were perfectly synchronized or there was a global system clock that could be instantaneously read

by the processes. However, both are impossible.

However, it turns out that even if the state of all the components in a distributed system has

not been recorded at the same instant, such a state will be meaningful provided every message that

is recorded as received is also recorded as sent. Basic idea is that an effect should not be present

without its cause. A message cannot be received if it was not sent; that is, the state should not

violate causality. Such states are called consistent global states and are meaningful global states.
Inconsistent global states are not meaningful in the sense that a distributed system can never be in

an inconsistent state.

A global state GS = is a consistent global state iff it satisfies the

following condition:

That is, channel state and process state must not include any message that process pi

sent after executing event e xi .

In the distributed execution of Figure, a global state GS1 consisting of local states

{ LS 1 , LS 3 , LS 3 , LS 2 } is inconsistent because the state of p2 has recorded the receipt of message
1 2 3 4

m12, however, the state of p1 has not recorded its send. On the contrary, a global state GS2

CS3551 – DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

consisting of local states { LS 1 , LS 3 , LS 3 , LS 2 } is consistent; all the channels are empty except
1

C21 that contains message m21

2 3 4

Figure: The space–time diagram of a distributed execution.

A global state GS = is transitless iff,

CNCET

Thus, all channels are recorded as empty in a transitless global state. A global state is

strongly consistent iff it is transitless as well as consistent. Note that in Figure, the global state

consisting of local states { LS 1 , LS 3 , LS 3 , LS 2 } is strongly consistent.
1 2 3 4

Recording the global state of a distributed system is an important paradigm when one is

interested in analyzing, monitoring, testing, or verifying properties of distributed applications,

systems, and algorithms. Design of efficient methods for recording the global state of a distributed

system is an important problem.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3551 DISTRIBUTED COMPUTING

UNIT II

LOGICAL TIME AND GLOBAL STATE

Logical Time: Physical Clock Synchronization: NTP – A Framework for a System of Logical

Clocks – Scalar Time – Vector Time; Message Ordering and Group Communication: Message

Ordering Paradigms – Asynchronous Execution with Synchronous Communication –

Synchronous Program Order on Asynchronous System – Group Communication – Causal Order

– Total Order; Global State and Snapshot Recording Algorithms: Introduction – System Model

and Definitions – Snapshot Algorithms for FIFO Channels

Logical Time

Definition

A system of logical clocks consists of a time domain T and a logical clock C. Elements of

T form a partially ordered set over a relation <. This relation is usually called the happened before

or causal precedence. Intuitively, this relation is analogous to the earlier than relation provided by

the physical time. The logical clock C is a function that maps an event e in a distributed system to

an element in the time domain T, denoted as C(e) and called the timestamp of e, and is defined as

follows:

C : H T,

such that the following property is satisfied: for two events ei and ej ,

ei → ej C(ei) < C(ej). This monotonicity property is called the clock consistency condition.

When T and C satisfy the following condition, for two events

ei and ej , ei →ej ⇔ C(ei) < C(ej),

the system of clocks is said to be strongly consistent.

Implementing logical clocks

Implementation of logical clocks requires addressing two issues: data structures local to

every process to represent logical time and a protocol (set of rules) to update the data structures to

ensure the consistency condition.

Each process pi maintains data structures that allow it the following two capabilities:

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

1. A local logical clock, denoted by lci, that helps process pi measure its own progress.

2. A logical global clock, denoted by gci, that is a representation of process pi’s local view of

the logical global time. It allows this process to assign consistent timestamps to its local

events. Typically, lci is a part of gci.

The protocol ensures that a process’s logical clock, and thus its view of the global time, is

managed consistently. The protocol consists of the following two rules:

1. R1 This rule governs how the local logical clock is updated by a process when it executes

an event (send, receive, or internal).

2. R2 This rule governs how a process updates its global logical clock to update its view of

the global time and global progress. It dictates what information about the logical time is

piggybacked in a message and how this information is used by the receiving process to

update its view of the global time.

Scalar time

Definition:

The scalar time representation was proposed by Lamport in 1978 as an attempt to totally

order events in a distributed system. Time domain in this representation is the set of non-negative

integers. The logical local clock of a process pi and its local view of the global time are squashed

into one integer variable Ci.

Rules R1 and R2 to update the clocks are as follows:

1. R1 Before executing an event (send, receive, or internal), process pi executes the

following:

Ci :=Ci+d (d > 0)

In general, every time R1 is executed, d can have a different value, and this value

may be application-dependent. However, typically d is kept at 1 because this is able to

identify the time of each event uniquely at a process, while keeping the rate of increase of

d to its lowest level.

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

2. R2 Each message piggybacks the clock value of its sender at sending time. When

a process pi receives a message with timestamp Cmsg, it executes the following

actions:

1. Ci := max(Ci, Cmsg,);

2. execute R1;

3. deliver the message.

Figure shows the evolution of scalar time with d=1.

Figure: Evolution of scalar time

Basic properties

Consistency property

Clearly, scalar clocks satisfy the monotonicity and hence the consistency property:

for two events ei and ej, ei →ej =⇒ C(ei) < C(ej).

Total Ordering

Scalar clocks can be used to totally order events in a distributed system. The main problem

in totally ordering events is that two or more events at different processes may have an identical

timestamp.

Event counting

If the increment value d is always 1, the scalar time has the following interesting property:

if event e has a timestamp h, then h−1 represents the minimum logical duration, counted in units

of events, required before producing the event e; we call it the height of the event e.

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

No strong consistency

The system of scalar clocks is not strongly consistent; that is, for two events ei and ej,

C(ei) < C(ej) ⇏ei→ej

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Vector time

Definition

The system of vector clocks was developed independently by Fidge, Mattern, and

Schmuck. In the system of vector clocks, the time domain is represented by a set of n-dimensional

non-negative integer vectors.

Each process pi maintains a vector vti[1…n], where vti[i] is the local logical clock of pi and

describes the logical time progress at process pi. vti [j] represents process pi’s latest knowledge of

process pi local time. If vti [j] = x, then process pi knows that local time at process pi has progressed

till x. The entire vector vti constitutes pi’s view of the global logical time and is used to timestamp

events.

Process pi uses the following two rules R1 and R2 to update its clock:

1. R1 Before executing an event, process pi updates its local logical time as follows:

2. vt of the sender process at sending time. On the receipt of such a message (m,vt), process pi

executes the following sequence of actions:

1. update its global logical time as follows:

2. execute R1;

3. deliver the message m.

The timestamp associated with an event is the value of the vector clock of its process when

the event is executed. Figure shows an example of vector clocks progress with the increment value

d = 1. Initially, a vector clock is [0,0,0,….].

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Figure: Evolution of vector time

The following relations are defined to compare two vector timestamps, vh and vk:

Basic Properties

Isomorphism

If events in a distributed system are timestamped using a system of vector clocks, we have

the following property. If two events x and y have timestamps vh and vk, respectively, then

Thus, there is an isomorphism between the set of partially ordered events produced by a

distributed computation and their vector timestamps. This is a very powerful, useful, and

interesting property of vector clocks.

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Strong consistency

The system of vector clocks is strongly consistent; thus, by examining the vector timestamp

of two events, we can determine if the events are causally related.

Event counting

If d is always 1 in rule R1, then the ith component of vector clock at process pi, vti[i],

denotes the number of events that have occurred at pi until that instant. So, if an event e has

timestamp vh, vh[j] denotes the number of events executed by process pj that causally precede e.

Applications

Since vector time tracks causal dependencies exactly, it finds a wide variety of applications.

For example, they are used in distributed debugging, implementations of causal ordering

communication and causal distributed shared memory, establishment of global breakpoints, and in

determining the consistency of checkpoints in optimistic recovery.

Size of vector clocks

 •

A vector clock provides the latest known local time at each other process. If this

information in the clock is to be used to explicitly track the progress at every other process,

then a vector clock of size n is necessary.

• A popular use of vector clocks is to determine the causality between a pair of events. Given

any events e and f, the test for e ≺ f if and only if T(e) < T(f), which requires a comparison

of the vector clocks of e and f. Although it appears that the clock of size n is necessary, that

is not quite accurate. It can be shown that a size equal to the dimension of the partial order

(E,≺) is necessary, where the upper bound on this dimension is n.

Physical clock synchronization: NTP

In distributed systems, there is no global clock or common memory. Each processor has its

own internal clock and its own notion of time. In practice, these clocks can easily drift apart by

several seconds per day, accumulating significant errors over time. Also, because different clocks

tick at different rates, they may not remain always synchronized although they might be

synchronized when they start.

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

a

Some practical examples that stress the need for synchronization are listed below:

• In database systems, the order in which processes perform updates on a database is

important to ensure a consistent, correct view of the database. To ensure the right

ordering of events, a common notion of time between co-operating processes becomes

imperative.

• It is quite common that distributed applications and network protocols use timeouts,

and their performance depends on how well physically dispersed processors are time-

synchronized. Design of such applications is simplified when clocks are synchronized.

Clock synchronization is the process of ensuring that physically distributed processors have

a common notion of time. It has a significant effect on many problems like secure systems, fault

diagnosis and recovery, scheduled operations, database systems, and real-world clock values.

Due to different clocks rates, the clocks at various sites may diverge with time, and

periodically a clock synchronization must be performed to correct this clock skew in distributed

systems. Clocks are synchronized to an accurate real-time standard like UTC (Universal

Coordinated Time).

Definitions and terminology

We provide the following definitions. Ca and Cb are any two clocks.

• Time: The time of a clock in a machine p is given by the function Cp(t), where

Cp(t) = t for a perfect clock.

• Frequency: Frequency is the rate at which a clock progresses. The frequency at time t

of clock Ca is C ' (t)

• Offset: Clock offset is the difference between the time reported by a clock and the real

time. The offset of the clock Ca is given by Ca(t)−t. The offset of clock Ca relative to

Cb at time t ≥ 0 is given by Ca(t)− Cb(t).

• Skew: The skew of a clock is the difference in the frequencies of the clock and the

perfect clock. The skew of a clock Ca relative to clock Cb at time t is C ' (t) − C ' (t) .
a b

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

a

• Drift (rate): The drift of clock Ca is the second derivative of the clock value with

respect to time, namely,

C '' (t) - C '' (t)
a b

Clock inaccuracies

C '' (t) . The drift of clock Ca relative to clock Cb at time t is

Physical clocks are synchronized to an accurate real-time standard like UTC (Universal

Coordinated Time).

However, due to the clock inaccuracy discussed above, a timer (clock) is said to be working

within its specification if

where constant 𝜌 is the maximum skew rate specified by the manufacturer.

Offset delay estimation method

The Network Time Protocol USED FOR clock synchronization on the

Internet, uses the the offset delay estimation method. The design of NTP involves a hierarchical

tree of time servers. The primary server at the root synchronizes with the UTC. The next level

contains secondary servers, which act as a backup to the primary server. At the lowest level is the

synchronization subnet which has the clients.

Clock offset and delay estimation

Figure: The behavior of fast, slow, and perfect clocks with respect to UTC

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

In practice, a source node cannot accurately estimate the local time on the target node due

to varying message or network delays between the nodes. This protocol employs a very common

practice of performing several trials and chooses the trial with the minimum delay. Recall that

Cristian’s remote clock reading method also relied on the same strategy to estimate message delay.

Figure: Offset and delay estimation

Figure shows how NTP timestamps are numbered and exchanged between peers A and B.

Let T1, T2, T3, T4 be the values of the four most recent timestamps as shown. Assume that clocks

A and B are stable and running at T2− T3 and b = T2 − T4. If the network delay difference from A

to B and from B to A, called differential delay, is small, the clock offset

𝜃 and roundtrip delay 𝛿 of B relative to A at time T4 are approximately given by the following:

Figure: Timing diagram for the two servers

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Each NTP message includes the latest three timestamps T1, T2, and T3, while T4 is

determined upon arrival. Thus, both peers A and B can independently calculate delay and offset

using a single bidirectional message stream as shown in Figure.

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Message ordering and group communication

Message ordering paradigms

The order of delivery of messages in a distributed system is an important aspect of system

executions because it determines the messaging behavior that can be expected by the distributed

program. Distributed program logic greatly depends on this order of delivery.

Several orderings on messages have been defined:

(i) non-FIFO

(ii) FIFO

(iii) causal order, and

(iv) synchronous order

Asynchronous executions

An asynchronous execution (or A-execution) is an execution (E, ≺) for which the causality

relation is a partial order.

On any logical link between two nodes in the system, messages may be delivered in any

order, not necessarily first-in first-out. Such executions are also known as non-FIFO executions.

Although each physical link typically delivers the messages sent on it in FIFO order due to the

physical properties of the medium, a logical link may be formed as a composite of physical links

and multiple paths may exist between the two end points of the logical link. As an example, the

mode of ordering at the Network Layer in connectionless networks such as IPv4 is non-FIFO. The

following Figure (a) illustrates an A-execution under non-FIFO ordering.

a) An A-execution that

is not a FIFO execution.

(b) An A-execution that

is also a FIFO

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

CNCET

FIFO executions

A FIFO execution is an A-execution in which,

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ, (𝑠~𝑠′𝑎𝑛𝑑 𝑟 ~ 𝑟′𝑎𝑛𝑑 𝑠 ≺ s′) ⇒ 𝑟 ≺ r′

On any logical link in the system, messages are necessarily delivered in the order in which they

are sent. Although the logical link is inherently non- FIFO, most network protocols provide a

connection-oriented service at the transport layer.

A simple algorithm to implement a FIFO logical channel over a non-FIFO channel would

use a separate numbering scheme to sequence the messages on each logical channel. The sender

assigns and appends a (sequence_num, connection_id) tuple to each message. The receiver uses a

buffer to order the incoming messages as per the sender’s sequence numbers, and accepts only the

“next” message in sequence. The above Figure (b) illustrates an A-execution under FIFO ordering.

Causally ordered (CO) executions

A CO execution is an A-execution in which,

for all (𝑠, 𝑟) and(𝑠′, 𝑟′) ∈ Τ, (𝑟 ~ 𝑟′𝑎𝑛𝑑 𝑠 ≺ s′) ⇒ 𝑟 ≺ r′

If two send events 𝑠 and 𝑠′ are related by causality ordering (not physical time ordering), then a

causally ordered execution requires that their corresponding receive events 𝑟 and 𝑟′ occur in the

same order at all common destinations. Note that if 𝑠 and 𝑠′ are not related by causality, then

CO is vacuously satisfied because the antecedent of the implication is false.

Causal order is useful for applications requiring updates to shared data, implementing

distributed shared memory, and fair resource allocation such as granting of requests for distributed

mutual exclusion.

To implement CO, we distinguish between the arrival of a message and its delivery. A

message m that arrives in the local OS buffer at Pi may have to be delayed until the messages that

were sent to Pi causally before m was sent (the “overtaken” messages) have arrived and are

processed by the application. The delayed message m is then given to the application for

processing. The event of an application processing an arrived message is referred to as a delivery

event (instead of as a receive event) for emphasis.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Definition of causal order (CO) for implementations

If send(m1) ≺ send(m2) then for each common destination d of messages m1 and m2,

deliverd (m
1)≺ deliverd(m

2) must be satisfied.

Observe that if the definition of causal order is restricted so that m1 and m2 are sent by the

same process, then the property degenerates into the FIFO property. In a FIFO execution, no

message can be overtaken by another message between the same (sender, receiver) pair of

processes. The FIFO property which applies on a per-logical channel basis can be extended

globally to give the CO property. In a CO execution, no message can be overtaken by a chain of

messages between the same (sender, receiver) pair of processes.

Message order (MO)

A MO execution is an A-execution in which,

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ 𝑠 ≺ s′ ⇒ ¬(𝑟 ≺ r′)

Empty-interval execution

An execution (E,≺

CNCET

) is an empty-interval (EI) execution if for each pair of events

(𝑠, 𝑟) ∈ 𝑇, the open interval set {𝑥 ∈ 𝐸|𝑠 ≺ 𝑥 ≺ 𝑟} in the partial order is empty.

Synchronous execution (SYNC)

When all the communication between pairs of processes uses synchronous send and receive

primitives, the resulting order is the synchronous order. As each synchronous communication

involves a handshake between the receiver and the sender, the corresponding send and receive

events can be viewed as occuring instantaneously and atomically.

a) Execution in an
Asynchronous

system

b) Equivalent
instantaneous

communication

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

CNCET

In a timing diagram, the “instantaneous” message communication can be shown by

bidirectional vertical message lines. Figure (a) shows a synchronous execution on an asynchronous

system. Figure (b) shows the equivalent timing diagram with the corresponding instantaneous

message communication.

The “instantaneous communication” property of synchronous executions requires a

modified definition of the causality relation because for each (𝑠, 𝑟) ∈ 𝑇, the send event is not

causally ordered before the receive event. The two events are viewed as being atomic and

simultaneous, and neither event precedes the other.

Causality in a synchronous execution

The synchronous causality relation ≪ on E is the smallest transitive relation that satisfies

the following:

Synchronous execution

A synchronous execution (or S-execution) is an execution (E, ≪) for which the causality

relation ≪ is a partial order.

Timestamping a synchronous execution

An execution (E, ≺) is synchronous if and only if there exists a mapping from E to T

(scalar timestamps) such that

By assuming that a send event and its corresponding receive event are viewed atomically,

i.e., s(M) ≺ r(M) and r(M) ≺ s(M), it follows that for any events ei and ej that are not the send

event and the receive event of the same message, ei ≺ ej =⇒ T(ei) < T(ej).

http://www.enggtree.com/

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

A-execution can be realized under synchronous communication is called a realizable with

synchronous communication (RSC).

Non-separated linear extension is an extension of (E, ≺) is a linear extension of (E, ≺) such that

for each pair (s, r) ∈ T, the interval { x∈ E s ≺ x ≺ r } is empty.

A A-execution (E, ≺) is an RSC execution if and only if there exists a non-separated linear

extension of the partial order (E, ≺).

Asynchronous execution with synchronous communication

When all the communication between pairs of processes is by using synchronous send

and receive primitives, the resulting order is synchronous order. The algorithms run on
asynchronous systems will not work in synchronous system and vice versa is also true.

Realizable Synchronous Communication (RSC)

• An execution can be modeled to give a total order that extends the partial order

(E, ≺).

• In an A-execution, the messages can be made to appear instantaneous if there exist a

linear extension of the execution, such that each send event is immediately followed

by its corresponding receive event in this linear extension.

• In the non-separated linear extension, if the adjacent send event and its corresponding

receive event are viewed atomically, then that pair of events shares a common past

and a common future with each other.

Crown

The crown is <(s1, r1) (s2, r2)> as we have s1 ≺ r2 and s2 ≺ r1. Cyclic dependencies

may exist in a crown. The crown criterion states that an A-computation is RSC, i.e., it can be

realized on a system with synchronous communication, if and only if it contains no crown.

Timestamp criterion for RSC execution

An execution (E, ≺) is RSC if and only if there exists a mapping from E to T (scalar

timestamps) such that

Hierarchy of ordering paradigms

The orders of executions are:

• Synchronous order (SYNC)

• Causal order (CO)

• FIFO order (FIFO)

• Non FIFO order (non-FIFO)

The Execution order have the following results

− For an A-execution, A is RSC if and only if A is an S-execution.

− RSC ⊂ CO ⊂ FIFO ⊂ A

− This hierarchy is illustrated in Figure 2.3(a), and example executions of each class are

shown side-by-side in Figure 2.3(b)

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

− The above hierarchy implies that some executions belonging to a class X will not belong

to any of the classes included in X. The degree of concurrency is most in A andleast in

SYNC.

− A program using synchronous communication is easiest to develop and verify.

− A program using non-FIFO communication, resulting in an A execution, is hardest to

design and verify.

Fig (a) Fig (b)

Fig 2.3: Hierarchy of execution classes

Simulations

− The events in the RSC execution are scheduled as per some non-separated linear

extension, and adjacent (s, r) events in this linear extension are executed sequentially

in the synchronous system.

− The partial order of the asynchronous execution remains unchanged.

− If an A-execution is schedule the events to make them

RSC, without actually altering the partial order of the given A-execution.

− However, the following indirect strategy that does not alter the partial order can be

used.

− Each channel Ci,j is modeled by a control process Pi,j that simulates the channel buffer.

− An asynchronous communication from i to j becomes a synchronous communication

from i to Pi,j followed by a synchronous communication from Pi,j to j.

− This enables the decoupling of the sender from the receiver, a feature that is essential

in asynchronous systems.

Fig 2.4: Modeling channels as processes to simulate an execution using

asynchronous primitives on synchronous system

Synchronous programs on asynchronous systems

− A (valid) S-execution can be trivially realized on an asynchronous system by

scheduling the messages in the order in which they appear in the S-execution.

− The partial order of the S-execution remains unchanged but the communication occurs

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

on an asynchronous system that uses asynchronous communication primitives.

− Once a message send event is scheduled, the middleware layer waits for

acknowledgment; after the ack is received, the synchronous send primitive completes.

SYNCHRONOUS PROGRAM ORDER ON AN ASYNCHRONOUS SYSTEM

Non deterministic programs

The partial ordering of messages in the distributed systems makes the repeated runs of

the same program will produce the same partial order, thus preserving deterministic nature.

But sometimes the distributed systems exhibit non determinism:

• A receive call can receive a message from any sender who has sent a message, if the

expected sender is not specified.

• Multiple send and receive calls which are enabled at a process can be executed in an

interchangeable order.

• If i sends to j, and j sends to i concurrently using blocking synchronous calls, there

results a deadlock.

• There is no semantic dependency between the send and the immediately following

receive at each of the processes. If the receive call at one of the processes can be

scheduled before the send call, then there is no deadlock.

Rendezvous

Rendezvous systems are a form of synchronous communication among an arbitrary

number of asynchronous processes. All the processes involved meet with each other, i.e.,

communicate synchronously with each other at one time. Two types of rendezvous systems

are possible:

• Binary rendezvous:.

• Multi-way rendezvous: When more than two processes agree to synchronize.

Features of binary rendezvous:

• For the receive command, the sender must be specified. However, multiple recieve

commands can exist. A type check on the data is implicitly performed.

• Send and received commands may be individually disabled or enabled. A command is

disabled if it is guarded and the guard evaluates to false. The guard would likely

contain an expression on some local variables.

• Synchronous communication is implemented by scheduling messages under the

covers using asynchronous communication.

• Scheduling involves pairing of matching send and receives commands that are both

enabled. The communication events for the control messages under the covers do not

alter the partial order of the execution.

Binary rendezvous algorithm

If multiple interactions are enabled, a process chooses one of them and tries to

synchronize with the partner process. The problem reduces to one of scheduling messages

satisfying the following constraints:

• Schedule on-line, atomically, and in a distributed manner.

• Schedule in a deadlock-free manner (i.e., crown-free).

• Schedule to satisfy the progress property in addition to the safety property.

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Steps in Bagrodia algorithm

1. Receive commands are forever enabled from all processes.

2. A send command, once enabled, remains enabled until it completes, i.e., it is not

possible that a send command gets before the send is executed.

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break

potential crowns that arise.

4. Each process attempts to schedule only one send event at any time.

The message (M) types used are: M, ack(M), request(M), and permission(M). Execution

events in the synchronous execution are only the send of the message M and receive of the

message M. The send and receive events for the other message types – ack(M), request(M),

and permission(M) which are control messages. The messages request(M), ack(M), and

permission(M) use M’s unique tag; the message M is not included in these messages.

(message types)

M, ack(M), request(M), permission(M)

(1) Pi wants to execute SEND(M) to a lower priority process Pj:

Pi executes send(M) and blocks until it receives ack(M) from Pj . The send event SEND(M) now

completes.

Any M’ message (from a higher priority processes) and request(M’) request for synchronization (from

a lower priority processes) received during the blocking period are queued.

(2a) Pi seeks permission from Pj by executing send(request(M)).

// to avoid deadlock in which cyclically blocked processes queue // messages.

(2b) While Pi is waiting for permission, it remains unblocked.

(i) If a message M’ arrives from a higher priority process Pk, Pi accepts M’ by scheduling a
RECEIVE(M’) event and then executes send(ack(M’)) to Pk.

(ii) If a request(M’) arrives from a lower priority process Pk, Pi executes send(permission(M’)) to Pk and
blocks waiting for the messageM’. WhenM’ arrives, the RECEIVE(M’) event is executed.

(2c) When the permission(M) arrives, Pi knows partner Pj is synchronized and Pi executes send(M). The

SEND(M) now completes.

(2) request(M) arrival at Pi from a lower priority process Pj:

At the time a request(M) is processed by Pi, process Pi executes send(permission(M)) to Pj and blocks

waiting for the message M. When M arrives, the RECEIVE(M) event is executed and the process

unblocks.

(3) Message M arrival at Pi from a higher priority process Pj:

At the time a message M is processed by Pi, process Pi executes RECEIVE(M) (which is assumed to be

always enabled) and then send(ack(M)) to Pj .

(4) Processing when Pi is unblocked:

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

When Pi is unblocked, it dequeues the next (if any) message from the queue and processes it as a

message arrival (as per rules 3 or 4).

Fig 2.5: Bagrodia Algorithm

GROUP COMMUNICATION

Group communication is done by broadcasting of messages. A message broadcast is

the sending of a message to all members in the distributed system. The communication may

be

• Multicast: A message is sent to a certain subset or a group.

• Unicasting: A point-to-point message communication.

The network layer protocol cannot provide the following functionalities:

▪ Application-specific ordering semantics on the order of delivery of messages.

▪ Adapting groups to dynamically changing membership.

▪ Sending multicasts to an arbitrary set of processes at each send event.

▪ Providing various fault-tolerance semantics.

▪ The multicast algorithms can be open or closed group.

Differences between closed and open group algorithms:

Closed group algorithms Open group algorithms

If sender is also one of the receiver in the
multicast algorithm, then it is closed group
algorithm.

If sender is not a part of the communication
group, then it is open group algorithm.

They are specific and easy to implement. They are more general, difficult to design and

expensive.

It does not support large systems where client
processes have short life.

It can support large systems.

CAUSAL ORDER (CO)

In the context of group communication, there are two modes of communication: causal

order and total order. Given a system with FIFO channels, causal order needs to be explicitly

enforced by a protocol. The following two criteria must be met by a causal
ordering protocol:

• Safety: In order to prevent causal order from being violated, a message M that arrives

at a process may need to be buffered until all system wide messages sent in the causal

past of the send (M) event to that same destination have already arrived. The arrival of

a message is transparent to the application process. The delivery event corresponds tothe

receive event in the execution model.

• Liveness: A message that arrives at a process must eventually be delivered to the

process.

The Raynal–Schiper–Toueg algorithm

• Each message M should carry a log of all other messages sent causally before M’s send

event, and sent to the same destination dest(M).

• The Raynal–Schiper–Toueg algorithm canonical algorithm is a representative of

several algorithms that reduces the size of the local space and message space overhead

by various techniques.

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

• This log can then be examined to ensure whether it is safe to deliver a message.

• All algorithms aim to reduce this log overhead, and the space and time overhead of

maintaining the log information at the processes.

• To distribute this log information, broadcast and multicast communication is used.

• The hardware-assisted or network layer protocol assisted multicast cannot efficiently

provide features:

➢ Application-specific ordering semantics on the order of delivery of messages.

➢ Adapting groups to dynamically changing membership.

➢ Sending multicasts to an arbitrary set of processes at each send event.

➢ Providing various fault-tolerance semantics

CNCET

http://www.enggtree.com/

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Causal Order (CO)

An optimal CO algorithm stores in local message logs and propagates on messages, information
of the form d is a destination of M about a messageM sent in the causal past, as long as and

only as long as:

Propagation Constraint I: it is not known that the message M is delivered to d.

Propagation Constraint II: it is not known that a message has been sent to d in the causal

future of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that

the message M will be delivered to d in CO.

Fig 2.6: Conditions for causal ordering

The Propagation Constraints also imply that if either (I) or (II) is false, the information

“d ∈ M.Dests” must not be stored or propagated, even to remember that (I) or (II) has been

falsified:
▪ not in the causal future of Deliverd(M1, a)

▪ not in the causal future of e k, c where d ∈Mk,cDests and there is no other

message sent causally between Mi,a and Mk, c to the same destination d.

Information about messages:

(i) not known to be delivered

(ii) not guaranteed to be delivered in CO, is explicitly tracked by the algorithm using (source,

timestamp, destination) information.

Information about messages already delivered and messages guaranteed to be delivered in

CO is implicitly tracked without storing or propagating it, and is derived from the explicit

information. The algorithm for the send and receive operations is given in Fig. 2.7 a) and b).

Procedure SND is executed atomically. Procedure RCV is executed atomically except for a

possible interruptionin line 2a where a non-blocking wait is required to meet the Delivery

Condition.

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Fig 2.7 a) Send algorithm by Kshemkalyani–Singhal to optimally implement causal

ordering

Fig 2.7 b) Receive algorithm by Kshemkalyani–Singhal to optimally implement causal

ordering

The data structures maintained are sorted row–major and then column–major:

1. Explicit tracking:

▪ Tracking of (source, timestamp, destination) information for messages (i) not known to be

delivered and (ii) not guaranteed tobe delivered in CO, is done explicitly using the I.Dests

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

field of entries inlocal logs at nodes and o.Dests field of entries in messages.

▪ Sets li,aDestsand oi,a. Dests contain explicit information of destinations to which Mi,ais not

guaranteed to be delivered in CO and is not known to be delivered.

▪ The information about d ∈Mi,a .Destsis propagated up to the earliestevents on all causal

paths from (i, a) at which it is known that Mi,a isdelivered to d or is guaranteed to be

delivered to d in CO.

2. Implicit tracking:

▪ Tracking of messages that are either (i) already delivered, or (ii) guaranteed to be

delivered in CO, is performed implicitly.

▪ The information about messages (i) already delivered or (ii) guaranteed tobe delivered

in CO is deleted and not propagated because it is redundantas far as enforcing CO is

concerned.

▪ It is useful in determiningwhat information that is being carried in other messages and

is being storedin logs at other nodes has become redundant and thus can be purged.

▪ Thesemantics are implicitly stored and propagated. This information about messages

that are (i) already delivered or (ii) guaranteed to be delivered in CO is tracked without

explicitly storing it.

▪ The algorithm derives it from the existing explicit information about messages (i) not

known to be delivered and (ii) not guaranteed to be delivered in CO, by examining only

oi,aDests or li,aDests, which is a part of the explicit information.

Fig 2.8: Illustration of propagation constraints

Multicasts M5,1and M4,1

Message M5,1 sent to processes P4 and P6 contains the piggybacked information M5,1.

Dest= {P4, P6}. Additionally, at the send event (5, 1), the information M5,1.Dests = {P4,P6}

is also inserted in the local log Log5. When M5,1 is delivered to P6, the (new) piggybacked

information P4 ∈ M5,1 .Dests is stored in Log6 as M5,1.Dests ={P4} information about P6 ∈
M5,1.Dests which was needed for routing, must not be stored in Log6 because of constraint I. In

the same way when M5,1 is delivered to process P4

at event (4, 1), only the new piggybacked information P6 ∈ M5,1 .Dests is inserted in Log4 as

M5,1.Dests =P6which is later propagated duringmulticast M4,2.

Multicast M4,3

At event (4, 3), the information P6 ∈M5,1.Dests in Log4 is propagated onmulticast M4,3only to
process P6 to ensure causal delivery using the DeliveryCondition. The piggybacked

CNCET

http://www.enggtree.com/

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

information on message M4,3sent to process P3must not contain this information because of

constraint II. As long as any future message sent to P6 is delivered in causal order w.r.t. M4,3sent

to P6, it will also be delivered in causal order w.r.t. M5,1. And as M5,1 is already delivered to

P4, the information M5,1Dests = ∅ is piggybacked on M4,3 sent to P 3. Similarly, the information

P6 ∈ M5,1Dests must be deleted from Log4 as it will no longer be needed, because of constraint

II. M5,1Dests = ∅ is stored in Log4 to remember that M5,1 has been delivered or is guaranteed
to be delivered in causal order to all its destinations.

Learning implicit information at P2 and P3

When message M4,2is received by processes P2 and P3, they insert the (new) piggybacked

information in their local logs, as information M5,1.Dests = P6. They both continue to store

this in Log2 and Log3 and propagate this information on multicasts until they learn at events
(2, 4) and (3, 2) on receipt of messages M3,3and M4,3, respectively, that any future message is

expected to be delivered in causal order to process P6, w.r.t. M5,1sent toP6. Hence by constraint

II, this information must be deleted from Log2 andLog3. The flow of events is given by;

• When M4,3 with piggybacked information M5,1Dests = ∅ is received byP3at (3, 2), this

is inferred to be valid current implicit information aboutmulticast M5,1because the log

Log3 already contains explicit informationP6 ∈M5,1.Dests about that multicast.

Therefore, the explicit informationin Log3 is inferred to be old and must be deleted to

achieve optimality. M5,1Dests is set to ∅ in Log3.

• The logic by which P2 learns this implicit knowledge on the arrival of M3,3is identical.

Processing at P6

When message M5,1 is delivered to P6, only M5,1.Dests = P4 is added to Log6. Further, P6

propagates only M5,1.Dests = P4 on message M6,2, and this conveys the current implicit

information M5,1 has been delivered to P6 by its very absence in the explicit information.
• piggybacked as M5,1 .Dests

= P6 it is used only to ensure causal delivery of M4,3 using the Delivery Condition,

and is not inserted in Log6 (constraint I) – further, the presence of M5,1 .Dests = P4

in Log6 implies the implicit information that M5,1 has already been delivered to

P6. Also, the absence of P4 in M5,1 .Dests in the explicit piggybacked information

implies the implicit information that M5,1 has been delivered or is guaranteed to be

delivered in causal order to P4, and, therefore, M5,1. Dests is set to ∅ in Log6.
• When the information P6 ∈ M5,1 .Dests arrives on M5,2 piggybacked as M5,1. Dests

= {P4, P6} it is used only to ensure causal delivery of M4,3 using the Delivery

Condition, and is not inserted in Log6 because Log6 contains M5,1 .Dests = ∅,

which gives the implicit information that M5,1 has been delivered or is guaranteed

to be delivered in causal order to both P4 and P6.

Processing at P1

• When M2,2arrives carrying piggybacked information M5,1.Dests = P6 this (new)

information is inserted in Log1.

• When M6,2arrives with piggybacked information M5,1.Dests ={P4}, P1learns implicit

information M5,1has been delivered to P6 by the very absence of explicit information

P6 ∈ M5,1.Dests in the piggybacked information, and hence marks information P6 ∈

M5,1Dests for deletion from Log1. Simultaneously, M5,1Dests = P6 in Log1 implies

the implicit information that M5,1has been delivered or is guaranteed to be delivered in

causal order to P4.Thus, P1 also learns that the explicit piggybacked information

M5,1.Dests = P4 is outdated. M5,1.Dests in Log1 is set to ∅.

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

For each pair of processes Pi and Pj and for each pair of messages Mx and My that are delivered

to both the processes, Pi is delivered Mx before My if and only if Pj is delivered Mxbefore My.

• The information “P6 ∈M5,1.Dests piggybacked on M2,3,which arrives at P 1, is

inferred to be outdated usingthe implicit knowledge derived from M5,1.Dest= ∅” in

Log1.

TOTAL ORDER

Centralized Algorithm for total ordering

Each process sends the message it wants to broadcast to a centralized process, which

relays all the messages it receives to every other process over FIFO channels.

Complexity: Each message transmission takes two message hops and exactly n messages

in a system of n processes.

Drawbacks: A centralized algorithm has a single point of failure and congestion, and is

not an elegant solution. CNCET

Three phase distributed algorithm

Three phases can be seen in both sender and receiver side.

Sender side

Phase 1

• In the first phase, a process multicasts the message M with a locally unique tag and

the local timestamp to the group members.

Phase 2

• The sender process awaits a reply from all the group members who respond with a

tentative proposal for a revised timestamp for that message M.

• The await call is non-blocking.

Phase 3

• The process multicasts the final timestamp to the group.

http://www.enggtree.com/

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Fig 2.9: Sender side of three phase distributed algorithm

Receiver Side

Phase 1

• The receiver receives the message with a tentative timestamp. It updates the variable

priority that tracks the highe
w
, then revises the proposed timestamp to the priority, and

places the message with its tag and the revised

timestamp at the tail of the queue temp_Q. In the queue, the entry is marked as

undeliverable.

Phase 2

• The receiver sends the revised timestamp back to the sender. The receiver then waits

in a non-blocking manner for the final timestamp.

Phase 3

• The final timestamp is received from the multicaster. The corresponding message

entry in temp_Q is identified using the tag, and is marked as deliverable after the

revised timestamp is overwritten by the final timestamp.

• The queue is then resorted using the timestamp field of the entries as the key. As the

queue is already sorted except for the modified entry for the message under

consideration, that message entry has to be placed in its sorted position in the queue.

• If the message entry is at the head of the temp_Q, that entry, and all consecutive

subsequent entries that are also marked as deliverable, are dequeued from temp_Q,

and enqueued in deliver_Q.

Complexity

This algorithm uses three phases, and, to send a message to n − 1 processes, it uses 3(n – 1)
messages and incurs a delay of three message hops

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

GLOBAL STATE AND SNAPSHOT RECORDING ALGORITHMS

• A distributed computing system consists of processes that do not share a common

memory and communicate asynchronously with eachother by message passing.

• Each component ofhas a local state. The state of the process is the local memory and a

history of its activity.

• The state of achannel is characterized by the set of messages sent along the channel

lessthe messages received along the channel. The global state of a distributedsystem is

a collection of the local states of its components.

• If shared memory were available, an up-to-date state of the entire systemwould be

available to the processes sharing the memory.

• The absence ofshared memory necessitates ways of getting a coherent and complete

view ofthe system based on the local states of individual processes.

• A meaningfulglobal snapshot can be obtained if the components of the distributed

systemrecord their local states at the same time.

• This would be possible if thelocal clocks at processes were perfectly synchronized or if

there were aglobal system clock that could be instantaneously read by the processes.

• If processes read time froma single common clock, various indeterminatetransmission

delays during the read operation will cause the processes toidentify various physical

instants as the same time.

System Model

• The system consists of a collection of n processes, p1, p2,…,pn that are connected

by channels.

• Processes and channels have states associated with them.

• The state of a process at any time is defined by the contents of processor registers,

stacks, local memory, etc., and may be highly dependent on the local context of the

distributed application.

• The state of channel Cij, denoted by SCij, is given by the set of messages in transit

in the channel.

• The events that may happen are: internal event, send (send (mij)) and receive

(rec(mij)) events.

• The occurrences of events cause changes in the processstate.

• A channel is a distributed entity and its state depends on the local states of the

processes on which it is incident.

• The transit function records the state of the channel Cij.

• In the FIFO model, each channel acts as a first-in first-out message queue and, thus,

message ordering is preserved by a channel.

• In the non-FIFO model, achannel acts like a set in which the sender process adds

messages and thereceiver process removes messages from it in a random order.

A consistent global state

The global state of a distributed system is a collection of the local states ofthe processes

and the channels. The global state is given by:

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Law of conservation of messages: Every messagemijthat is recorded as sent in the local state of a

process pi must be capturedin the state of the channel Cij or in the collected local state of the

receiver process pj.

The two conditions for global state are:

Condition 1 preserves law of conservation of messages.Condition C2 states that in the

collected global state, for everyeffect, its cause must be present.

➢ In a consistent global state, every message that is recorded as received isalso recorded

as sent. Such a global state captures the notion of causalitythat a message cannot be

received if it was not sent.

➢ Consistent global statesare meaningful global states and inconsistent global states are

not meaningful in the sense that a distributed system can never be in an

inconsistentstate.

Interpretation of cuts

• Cuts in a space–time diagram provide a powerful graphical aid in representingand

reasoning about the global states of a computation. A cut is a line joiningan arbitrary

point on each process line that slices the space–time diagraminto a PAST and a

FUTURE.

• A consistent global state corresponds to a cut in which every messagereceived in the

PAST of the cut has been sent in the PAST of that cut. Sucha cut is known as a

consistent cut. CNCET

• In a consistent snapshot, all the recorded local states of processes are concurrent; that

is, the recorded local state of no process casuallyaffects the recorded local state of any

other process.

Issues in recording global state

The non-availability of global clock in distributed system, raises the following issues:

Issue 1:

How to distinguish between the messages to be recorded in the snapshot from those not

to be recorded?
Answer:

• Any message that is sent by a process before recording its snapshot,must be

recorded in the global snapshot (from C1).

• Any message that is sent by a process after recording its snapshot, mustnot be

recorded in the global snapshot (from C2).

Issue 2:

How to determine the instant when a process takes its snapshot?
The answer

Answer:

A process pj must record its snapshot before processing a message mij that was sent by

process pi after recording its snapshot.

http://www.enggtree.com/

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

A snapshot captures the local states of each process along with the state of each communication channel.

CNCET

SNAPSHOT ALGORITHMS FOR FIFO CHANNELS

Each distributed application has number of processes running on different physical

servers. These processes communicate with each other through messaging channels.

Snapshots are required to:

• Checkpointing

• Collecting garbage

• Detecting deadlocks

• Debugging

Chandy–Lamport algorithm

• The algorithm will record a global snapshot for each process channel.

• The Chandy-Lamport algorithm uses a control message, called a marker.

• Aftera site has recorded its snapshot, it sends a marker along all of its outgoingchannels

before sending out any more messages.

• Since channels are FIFO, amarker separates the messages in the channel into those to

be included in the snapshot from those not to be recorded inthe snapshot.

• This addresses issue I1. The role of markers in a FIFO systemis to act as delimiters for

the messages in the channels so that the channelstate recorded by the process at the

receiving end of the channel satisfies thecondition C2.

Fig 2.10: Chandy–Lamport algorithm

Initiating a snapshot
• Process Pi initiates the snapshot

• Pi records its own state and prepares a special marker message.

• Send the marker message to all other processes.

• Start recording all incoming messages from channels Cij for j not equal to i.

Propagating a snapshot
• For all processes Pjconsider a message on channel Ckj.

http://www.enggtree.com/

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

• If marker message is seen for the first time:

− Pjrecords own sate and marks Ckj as empty

− Send the marker message to all other processes.

− Record all incoming messages from channels Clj for 1 not equal to j or k.

− Else add all messages from inbound channels.

Terminating a snapshot
• All processes have received a marker.

• All process have received a marker on all the N-1 incoming channels.

• A central server can gather the partial state to build a global snapshot.

Correctness of the algorithm

• Since a process records its snapshot when itreceives the first marker on any incoming channel,

no messages that followmarkers on the channels incoming to it are recorded in the process’s

snapshot.

• A process stops recording the state of an incoming channel whena marker is received on that

channel.

• Due to FIFO property of channels, itfollows that no message sent after the marker on that

channel is recorded inthe channel state. Thus, condition C2 is satisfied.

• When a process pj receives message mij that precedes the marker on channel Cij, it acts as

follows: ifprocess pj has not taken its snapshot yet, then it includes mij in its recorded

snapshot. Otherwise, it records mij in the state of the channel Cij. Thus,condition C1 is satisfied.

Complexity

The recording part of a single instance of the algorithm requires O(e) messages
and O(d) time,

Properties of the recorded global state

The recorded global state may not correspond to any of the global states that occurred during

the computation.

This happens because a process can change its state asynchronously before the markers it sent

are received by other sites and the other sites record their states.

But the system could have passed through the recorded global states in some equivalent

executions.

The recorded global state is a valid state in an equivalent execution and if a stable property (i.e.,

a property that persists) holds in the system before the snapshot algorithm begins, it holds in the recorded

global snapshot.

Therefore, a recorded global state is useful in detecting stable properties.

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY

Mutual exclusion in a distributed system states that only one process is allowed to execute the

critical section (CS) at any given time.

UNIT III

DISTRIBUTED MUTEX & DEADLOCK

DISTRIBUTED MUTEX & DEADLOCK

Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport‘s algorithm –Ricart-Agrawala

algorithm – Maekawa‘s algorithm – Suzuki–Kasami‘s broadcast algorithm. Deadlock detection in distributed

systems: Introduction – System model – Preliminaries –Models of deadlocks – Knapp‘s classification –

Algorithms for the single resource model, the AND model and the OR model.

DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS

• Mutual exclusion is a concurrency control property which is introduced to prevent

race conditions.

• It is the requirement that a process cannot access a shared resource while another

concurrent process is currently present or executing the same resource.

• Message passing is the sole means for implementing distributed mutual exclusion.

• The decision as to which process is allowed access to the CS next is arrived at by

message passing, in which each process learns about the state of all other processes in

some consistent way.

• There are three basic approaches for implementing distributed mutual exclusion:
1. Token-based approach:CNCET

− A unique token is shared among all the sites.

− If a site possesses the unique token, it is allowed to enter its critical section

− This approach uses sequence number to order requests for the critical section.

− Each requests for critical section contains a sequence number. This sequence

number is used to distinguish old and current requests.

− This approach insures Mutual exclusion as the token is unique.

− Eg: Suzuki-Kasami’s Broadcast Algorithm

2. Non-token-based approach:

− A site communicates with other sites in order to determine which sites should

execute critical section next. This requires exchange of two or more successive

round of messages among sites.

− This approach use timestamps instead of sequence number to order requests

for the critical section.

− When ever a site make request for critical section, it gets a timestamp.

Timestamp is also used to resolve any conflict between critical section requests.

− All algorithm which follows non-token based approach maintains a logical

clock. Logical clocks get updated according to Lamport’s scheme.

− Eg: Lamport's algorithm, Ricart–Agrawala algorithm

http://www.enggtree.com/

− Instead of requesting permission to execute the critical section from all other

sites, Each site requests only a subset of sites which is called a quorum.

− Any two subsets of sites or Quorum contains a common site.

− This common site is responsible to ensure mutual exclusion.

− Eg: Maekawa’s Algorithm

Preliminaries
• The system consists of N sites, S1, S2, S3, …, SN.

• Assume that a single process is running on each site.

• The process at site Si is denoted by pi. All these processes communicate

asynchronously over an underlying communication network.

• A process wishing to enter the CS requests all other or a subset of processes by

sending REQUEST messages, and waits for appropriate replies before entering the

CS.

• While waiting the process is not allowed to make further requests to enter the CS.

• A site can be in one of the following three states: requesting the CS, executing the CS,

or neither requesting nor executing the CS.

• In the requesting the CS state, the site is blocked and cannot make further requests for

the CS.

• In the idle state, the site is executing outside the CS.

• In the token-based algorithms, a site can also be in a state where a site holding the

token is executing outside the CS. Such state is referred to as the idle token state.

• At any instant, a site may have several pending requests for CS. A site queues up

these requests and serves them one at a time.

• N denotes the number of in invoking the critical section, T

denotes the average message delay, and E denotes the average critical section

execution time.

Requirements of mutual exclusion algorithms

• Safety property:

The safety property states that at any instant, only one process can execute the

critical section. This is an essential property of a mutual exclusion algorithm.

• Liveness property:

This property states the absence of deadlock and starvation. Two or more sites

should not endlessly wait for messages that will never arrive. In addition, a site must

not wait indefinitely to execute the CS while other sites are repeatedly executing the

CS. That is, every requesting site should get an opportunity to execute the CS in finite

time.

• Fairness:

Fairness in the context of mutual exclusion means that each process gets a fair

chance to execute the CS. In mutual exclusion algorithms, the fairness property

generally means that the CS execution requests are executed in order of their arrival in

the system.

CNCET

execution by a site.

➢ Synchronization delay: After a site leaves the CS, it is the time required and before

the next site enters the CS. (Figure 3.1)

➢ Response time: This is the time interval a request waits for its CS execution to be

over after its request messages have been sent out. Thus, response time does not

include the time a request waits at a site before its request messages have been sent

out. (Figure 3.2)

➢ System throughput: This is the rate at which the system executes requests for the

CS. If SD is the synchronization delay and E is the average critical section execution

time.

Figure 3.1 Synchronization delay

Figure 3.2 Response Time

Low and High Load Performance:

▪ The performance of mutual exclusion algorithms is classified as two special loading

conditions, viz., “low load” and “high load”.

▪ The load is determined by the arrival rate of CS execution requests.

▪ Under low load conditions, there is seldom more than one request for the critical

section present in the system simultaneously.

▪ Under heavy load conditions, there is always a pending request for critical section at a

site.

Best and worst case performance

▪ In the best case, prevailing conditions are such that a performance metric attains the

best possible value. For example, the best value of the response time is a roundtrip

message delay plus the CS execution time, 2T +E.

http://www.enggtree.com/

is, respectively, low and high;

▪ The best and the worse message traffic is generated at low and heavy load conditions,

respectively.

LAMPORT’S ALGORITHM

• Lamport’s Distributed Mutual Exclusion Algorithm is a permission based algorithm

proposed by Lamport as an illustration of his synchronization scheme for distributed

systems.

• In permission based timestamp is used to order critical section requests and to resolve

any conflict between requests.

• In Lamport’s Algorithm critical section requests are executed in the increasing order of

timestamps i.e a request with smaller timestamp will be given permission toexecute

critical section first than a request with larger timestamp.

• Three type of messages (REQUEST, REPLY and RELEASE) are used and

communication channels are assumed to follow FIFO order.

• A site send a REQUEST message to all other site to get their permission to enter

critical section.

• A site send a REPLY message to requesting site to give its permission to enter the

critical section.

• A site send a RELEASE message to all other site upon exiting the critical section.

• Every site Si, keeps a queue to store critical section requests ordered by their

timestamps.

• request_queuei denotes the queue of site Si.
• Timestamp is used to determine priority of critical section requests. Smaller timestamp

gets high priority over larger timestamp. The execution of critical section request is

always in the order of their timestamp.

Fig 3.1: Lamport’s distributed mutual exclusion algorithm

To enter Critical section:

▪ When a site Si wants to enter the critical section, it sends a request message Request(tsi,

i) to all other sites and places the request on request_queuei. Here, Tsi denotes the

timestamp of Site Si.

▪ When a site Sj receives the request message REQUEST(tsi, i) from site Si, it returns a

timestamped REPLY message to site Si and places the request of site Si on

request_queuej

To execute the critical section:

• A site Si can enter the critical section if it has received the message with timestamp

larger than (tsi, i) from all other sites and its own request is at the top of request_queuei.

To release the critical section:

▪ When a site Si exits the critical section, it removes its own request from the top of its
request queue and sends a timestamped RELEASE message to all other sites. When a
site Sj receives the timestamped RELEASE message from site Si, it removes the request
of Sia from its request queue.

Correctness

Theorem: Lamport’s algorithm achieves mutual exclusion.

Proof: Proof is by contradiction.

▪ Suppose two sites Si and Sj are executing the CS concurrently. For this to happen
conditions L1 and L2 must hold at both the sites concurrently.

▪ This implies that at some instant in time, say t, both Si and Sj have their own requests
at the top of their request queues and condition L1 holds at them. Without loss of
generality, assume that Si ’s request has smaller timestamp than the request of Sj .

▪ From condition L1 and FIFO property of the communication channels, it is clear that at

instant t the request of Si must be present in request queuej when Sj was executing its CNCET
CS. This implies that Sj ’s own request is at the top of its own request queue whena

smaller timestamp request, Si ’s request, is present in the request queuej – a

contradiction!

Theorem: Lamport’s algorithm is fair.

Proof: The proof is by contradiction.

▪ Suppose a site Si ’s request has a smaller timestamp than the request of another site Sj

and Sj is able to execute the CS before Si .

▪ For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies that
at some instant in time say t, Sj has its own request at the top of its queue and it has also
received a message with timestamp larger than the timestamp of its request from all
other sites.

▪ But request queue at a site is ordered by timestamp, and according to our assumption

Si has lower timestamp. So Si ’s request must be placed ahead of the Sj ’s request in the

request queuej . This is a contradiction!

Message Complexity:

Lamport’s Algorithm requires invocation of 3(N – 1) messages per critical section execution.

These 3(N – 1) messages involves

• (N – 1) request messages

• (N – 1) reply messages

• (N – 1) release messages

http://www.enggtree.com/

Drawbacks of Lamport’s Algorithm:

• Unreliable approach: failure of any one of the processes will halt the progress of

entire system.

• High message complexity: Algorithm requires 3(N-1) messages per critical section

invocation.

Performance:

Synchronization delay is equal to maximum message transmission time. It requires 3(N – 1)
messages per CS execution. Algorithm can be optimized to 2(N – 1) messages by omitting

the REPLY message in some situations.

RICART–AGRAWALA ALGORITHM

• Ricart–Agrawala algorithm is an algorithm to for mutual exclusion in a distributed

system proposed by Glenn Ricart and Ashok Agrawala.

• This algorithm is an extension and optimization of Lamport’s Distributed Mutual

Exclusion Algorithm.

• It follows permission based approach to ensure mutual exclusion.

• Two type of messages (REQUEST and REPLY) are used and communication

channels are assumed to follow FIFO order.

• A site send a REQUEST message to all other site to get their permission to enter

critical section.

• A site send a REPLY message to other site to give its permission to enter the critical

section.

• A timestamp is given to each critical section request using Lamport’s logical clock.

• Timestamp is used to determine priority of critical section requests.

• Smaller timestamp gets high priority over larger timestamp.

• The execution of critical section request is always in the order of their timestamp.

Fig 3.2: Ricart–Agrawala algorithm

To enter Critical section:

• When a site Si wants to enter the critical section, it send a timestamped REQUEST
message to all other sites.

• When a site Sj receives a REQUEST message from site Si, It sends a REPLY message

to site Si if and only if Site Sj is neither requesting nor currently executing the critical

section.

• In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller than its own
request.

• Otherwise the request is deferred by site Sj.

To execute the critical section:

Site Si enters the critical section if it has received the REPLY message from all other

sites.

To release the critical section:
Upon exiting site Si sends REPLY message to all the deferred requests.

Theorem: Ricart-Agrawala algorithm achieves mutual exclusion.

Proof: Proof is by contradiction.

▪ Suppose two sites Si and Sj ‘ are executing the CS concurrently and Si ’s request has

higher priority than the request of Sj . Clearly, Si received Sj ’s request after it has made

its own request.

▪ Thus, Sj can concurrently execute the CS with Si only if Si returns a REPLY to Sj (in

response to Sj ’s request) before Si exits the CS.

▪ However, this is impossible because Sj ’s request has lower priority. Therefore,Ricart-
Agrawala algorithm achieves mutual exclusion.

Message Complexity:

Ricart–Agrawala algorithm requires invocation of 2(N – 1) messages per critical section

execution. These 2(N – 1) messages involve:

• (N – 1) request messages

• (N – 1) reply messages

Drawbacks of Ricart–Agrawala algorithm:

• Unreliable approach: failure of any one of node in the system can halt the progress

of the system. In this situation, the process will starve forever. The problem of failure

of node can be solved by detecting failure after some timeout.

Performance:

Synchronization delay is equal to maximum message transmission time It requires
2(N – 1) messages per Critical section execution.

MAEKAWA‘s ALGORITHM
• Maekawa’s Algorithm is quorum based approach to ensure mutual exclusion in

distributed systems.

Fig 3.3: Maekawa‘s Algorithm

• In permission based algorithms like Lamport’s Algorithm, Ricart-Agrawala Algorithm

etc. a site request permission from every other site but in quorum based approach, a site

does not request permission from every other site but from a subset ofsites which is

called quorum.

• Three type of messages (REQUEST, REPLY and RELEASE) are used.

• A site send a REQUEST message to all other site in its request set or quorum to get

their permission to enter critical section.

• A site send a REPLY message to requesting site to give its permission to enter the

critical section.

• A site send a RELEASE message to all other site in its request set or quorum upon

exiting the critical section

The following are the conditions for Maekawa’s algorithm:

Maekawa used the theory of projective planes and showed that N = K(K – 1)+ 1. This

relation gives |Ri|= √N.

To enter Critical section:

• When a site Si wants to enter the critical section, it sends a request message

REQUEST(i) to all other sites in the request set Ri.

To execute the critical section:

• A site Si can enter the critical section if it has received the REPLY message from all the

site in request set Ri

To release the critical section:

• When a site Si exits the critical section, it sends RELEASE(i) message to all other

sites in request set Ri

• When a site Sj receives the RELEASE(i) message from site Si, it send REPLY

message to the next site waiting in the queue and deletes that entry from the queue

• In case queue is empty, site Sj update its status to show that it has not sent any

REPLY message since the receipt of the last RELEASE message.

Correctness

Theorem: Maekawa’s algorithm achieves mutual exclusion.

Proof: Proof is by contradiction.

▪ Suppose two sites Si and Sj are concurrently executing the CS.

site Sj was able to receive a REPLY message from all sites in Rj .

▪ If Ri ∩ Rj = {Sk }, then site Sk must have sent REPLY messages to both Si and Sj

concurrently, which is a contradiction

Message Complexity:

Maekawa’s Algorithm requires invocation of 3√N messages per critical section execution as
the size of a request set is √N. These 3√N messages involves.

• √N request messages

• √N reply messages

• √N release messages

Drawbacks of Maekawa’s Algorithm:

This algorithm is deadlock prone because a site is exclusively locked by other sites

and requests are not prioritized by their timestamp.

Performance:

Synchronization delay is equal to twice the message propagation delay time. It requires 3√n
messages per critical section execution.

SUZUKI–KASAMI‘s BROADCAST ALGORITHM

• Suzuki–Kasami algorithm is a token-based algorithm for achieving mutual exclusion

in distributed systems.

• This is modification of Ricart–Agrawala algorithm, a permission based (Non-token

based) algorithm which uses REQUEST and REPLY messages to ensure mutual

exclusion.

• In token-based algorithms, A site is allowed to enter its critical section if it possesses

the unique token. CNCET
• Non-token based algorithms uses timestamp to order requests for the critical section

where as sequence number is used in token based algorithms.

• Each requests for critical section contains a sequence number. This sequence number

is used to distinguish old and current requests.

Fig 3.4: Suzuki–Kasami‘s broadcast algorithm

To enter Critical section:

http://www.enggtree.com/

M.A.M COLLEGE OF ENGINEERING

• When a site Si wants to enter the critical section and it does not have the token then it

increments its sequence number RNi[i] and sends a request message REQUEST(i, sn)

to all other sites in order to request the token.

• Here sn is update value of RNi[i]

• When a site Sj receives the request message REQUEST(i, sn) from site Si, it sets

RNj[i] to maximum of RNj[i] and sni.eRNj[i] = max(RNj[i], sn).

After updating RNj[i], Site Sj sends the token to site Si if it has token and RNj[i] =

LN[i] + 1

To execute the critical section:

• Site Si executes the critical section if it has acquired the token.

To release the critical section:

After finishing the execution Site Si exits the critical section and does following:

• sets LN[i] = RNi[i] to indicate that its critical section request RNi[i] has been executed

• For every site Sj, whose ID is not prsent in the token queue Q, it appends its ID to Q if

RNj[j] = LN[j] + 1 to indicate that site Sj has an outstanding request.

• After above updation, if the Queue Q is non-empty, it pops a site ID from the Q and

sends the token to site indicated by popped ID.

• If the queue Q is empty, it keeps the token

Correctness

Mutual exclusion is guaranteed because there is only one token in the system and a site holds

the token during the CS execution.

Theorem: A requesting site enters the CS in finite time.

Proof: Token request messages of a site Si reach other sites in finite time.
Since one of these sites will have token in finite time, site Si ’s request will be placed in the

token queue in finite time. CNCET

Since there can be at most N − 1 requests in front of this request in the token queue, site Si

will get the token and execute the CS in finite time.

Message Complexity:

The algorithm requires 0 message invocation if the site already holds the idle token at the

time of critical section request or maximum of N message per critical section execution. This
N messages involves

• (N – 1) request messages

• 1 reply message

Drawbacks of Suzuki–Kasami Algorithm:

• Non-symmetric Algorithm: A site retains the token even if it does not have requested

for critical section.

Performance:

Synchronization delay is 0 and no message is needed if the site holds the idle token at the

time of its request. In case site does not holds the idle token, the maximum synchronization

delay is equal to maximum message transmission time and a maximum of N message is

required per critical section invocation.

http://www.enggtree.com/

Deadlock can neither be prevented nor avoided in distributed system as the system is

so vast that it is impossible to do so. Therefore, only deadlock detection can be implemented.

The techniques of deadlock detection in the distributed system require the following:

• Progress:The method should be able to detect all the deadlocks in the system.

• Safety: The method should not detect false of phantom deadlocks.

There are three approaches to detect deadlocks in distributed systems.

Centralized approach:

• Here there is only one responsible resource to detect deadlock.

• The advantage of this approach is that it is simple and easy to implement, while the

drawbacks include excessive workload at one node, single point failure which in turns

makes the system less reliable.

Distributed approach:

• In the distributed approach different nodes work together to detect deadlocks. No

single point failure as workload is equally divided among all nodes.

• The speed of deadlock detection also increases.

Hierarchical approach:

• This approach is the most advantageous approach.

• It is the combination of both centralized and distributed approaches of deadlock

detection in a distributed system.

• In this approach, some selected nodes or cluster of nodes are responsible for deadlock

detection and these selected nodes are controlled by a single node.

System Model

•

CNCET
A distributed program is composed of a set of n asynchronous processes p1, p2, . .

. , pi , . . . , pn that communicates by message passing over the communication
network.

• Without loss of generality we assume that each process is running on a different

processor.

• The processors do not share a common global memory and communicate solely by

passing messages over the communication network.

• There is no physical global clock in the system to which processes have
instantaneous access.

• The communication medium may deliver messages out of order, messages may be

lost garbled or duplicated due to timeout and retransmission, processors may fail

and communication links may go down.
We make the following assumptions:

• The systems have only reusable resources.

• Processes are allowed to make only exclusive access to resources.

• There is only one copy of each resource.

• A process can be in two states: running or blocked.

• In the running state (also called active state), a process has all the needed
resources and is either executing or is ready for execution.

• In the blocked state, a process is waiting to acquire some resource.

Wait for graph

This is used for deadlock deduction. A graph is drawn based on the request and

acquirement of the resource. If the graph created has a closed loop or a cycle, then there is a

deadlock.

http://www.enggtree.com/

[Type here]

Fig 3.5: Wait for graph

Preliminaries

Deadlock Handling Strategies

Handling of deadlock becomes highly complicated in distributed systems because no

site has accurate knowledge of the current state of the system and because every inter-site

communication involves a finite and unpredictable delay. There are three strategies for

handling deadlocks:

• Deadlock prevention:

− This is achieved either by having a process acquire all the needed resources

simultaneously before it begins executing or by preempting a process which

holds the needed resource.

− This approach is h igwhlwy iwne.EffnicgiegnTt raened.cimopmract ical in distributed systems.

• Deadlock avoidance:

− A resource is granted to a process if the resulting global system state is safe.

This is impractical in distributed systems.

• Deadlock detection:

− This requires examination of the status of process-resource interactions for

presence of cyclic wait.

− Deadlock detection in distributed systems seems to be the best approach to

handle deadlocks in distributed systems.

Issues in deadlock Detection

Deadlock handling faces two major issues

1. Detection of existing deadlocks

2. Resolutionof detected deadlocks

Deadlock Detection

− Detection of deadlocks involves addressing two issues namely maintenance of the

WFG and searching of the WFG for the presence of cycles or knots.

− In distributed systems, a cycle or knot may involve several sites, the search for cycles

greatly depends upon how the WFG of the system is represented across the system.

− Depending upon the way WFG information is maintained and the search for cycles is

carried out, there are centralized, distributed, and hierarchical algorithms for deadlock

detection in distributed systems.

1. Progress-No undetected deadlocks:

The algorithm must detect all existing deadlocks in finite time. In other words, after all

wait-for dependencies for a deadlock have formed, the algorithm should not wait for any

more events to occur to detect the deadlock.

2. Safety -No false deadlocks:

The algorithm should not report deadlocks which do not exist. This is also called as

called phantom or false deadlocks.

Resolution of a Detected Deadlock

• Deadlock resolution involves breaking existing wait-for dependencies between the

processes to resolve the deadlock.

• It involves rolling back one or more deadlocked processes and assigning their

resources to blocked processes so that they can resume execution.

• The deadlock detection algorithms propagate information regarding wait-for

dependencies along the edges of the wait-for graph.

• When a wait-for dependency is broken, the corresponding information should be

immediately cleaned from the system.

• If this information is not cleaned in a timely manner, it may result in detection of

phantom deadlocks.

MODELS OF DEADLOCKS

The models of deadlocks are explained based on their hierarchy. The diagrams illustrate the

working of the deadlock models. Pa, Pb, Pc, Pdare passive processes that had already acquired

the resources. Peis active process that is requesting the resource.

Single Resource Model CNCET
• A process can have at most one outstanding request for only one unit of a resource.

• The maximum out-degree of a node in a WFG for the single resource model can be 1,

the presence of a cycle in the WFG shall indicate that there is a deadlock.

Fig 3.6: Deadlock in single resource model

AND Model

• In the AND model, a passive process becomes active (i.e., its activation condition is

fulfilled) only after a message from each process in its dependent set has arrived.

• In the AND model, a process can request more than one resource simultaneously and the

request is satisfied only after all the requested resources are granted to the process.

• The requested resources may exist at different locations.

• The out degree of a node in the WFG for AND model can be more than 1.

• The presence of a cycle in the WFG indicates a deadlock in the AND model.

• Each node of the WFG in such a model is called an AND node.

http://www.enggtree.com/

Deadlock in OR model: a process Pi is blocked if it has a pending OR request to be satisfied.

Fig 3.7: Deadlock in AND model

OR Model

• A process can make a request for numerous resources simultaneously and the request

is satisfied if any one of the requested resources is granted.

• Presence of a cycle in the WFG of an OR model does not imply a deadlock

in the OR model.

• In the OR model, the presence of a knot indicates a deadlock.

• With every blocked process, there is an associated set of processes called dependent

set.

• A process shall move from an idle to an active state on receiving a grant message

from any of the processes in its dependent set.

• A process is permanently blocked if it never receives a grant message from any of the

processes in its dependent set.
CNCET

• A set of processes S is deadlocked if all the processes in S are permanently blocked.

• In short, a processis deadlocked or permanently blocked, if the following conditions

are met:

1. Each of the process is the set S is blocked.

2. The dependent set for each process in S is a subset of S.

3. No grant message is in transit between any two processes in set S.

• A blocked process P is the set S becomes active only after receiving a grant message

from a process in its dependent set, which is a subset of S.

Fig 3.8: OR Model

Model (p out of q model)

• This is a variation of AND-OR model.

http://www.enggtree.com/

• This favours more compact formation of a request.

• Every request in this model can be expressed in the AND-OR model and vice-versa.

• Note that AND requests for p resources can be stated as and OR requests for p

resources can be stated as

Fig 3.9: p out of q Model

Unrestricted model

• No assumptions are made regarding the underlying structure of resource requests.

• In this model, only one assumption that the deadlock is stable is made and hence it is

the most general model.

• This model helps separate concerns: Concerns about properties of the problem (stability

and deadlock) are separated from underlying distributed systems computations (e.g.,

message passing versus synchronous communication).

CNCET

http://www.enggtree.com/

KNAPP’S CLASSIFICATION OF DISTRIBUTED DEADLOCK DETECTION

ALGORITHMS
The four classes of distributed deadlock detection algorithm are:

1. Path-pushing

2. Edge-chasing

3. Diffusion computation

4. Global state detection

Path Pushing algorithms

• In path pushing algorithm, the distributed deadlock detection are detected by

maintaining an explicit global wait for graph.

• The basic idea is to build a global WFG (Wait For Graph) for each site of the

distributed system.

• At each site whenever deadlock computation is performed, it sends its local WFG to

all the neighbouring sites.

• After the local data structure of each site is updated, this updated WFG is then passed

along to other sites, and the procedure is repeated until some site has a sufficiently

complete picture of the global state to announce deadlock or to establish that no

deadlocks are present.

• This feature of sending around the paths of global WFGhas led to the term path-

pushing algorithms.

Examples:Menasce-Muntz , Gligor and Shattuck, Ho and Ramamoorthy, Obermarck

Edge Chasing Algorithms

• The presence of a cycle in awdwiswt r.iEbuntgedgTgrreapeh.csot rmuct ure is be verified by propagating

special messages called probes, along the edges of the graph.

• These probe messages are different than the request and reply messages.

• The formation of cycle can be deleted by a site if it receives the matching probe sent

by it previously.

• Whenever a process that is executing receives a probe message, it discards this

message and continues.

• Only blocked processes propagate probe messages along their outgoing edges.

• Main advantage of edge-chasing algorithms is that probes are fixed size messages

which is normally very short.

Examples:Chandy et al., Choudhary et al., Kshemkalyani–Singhal, Sinha–Natarajan

algorithms.

Diffusing Computation Based Algorithms

• In diffusion computation based distributed deadlock detection algorithms, deadlock

detection computation is diffused through the WFG of the system.

• These algorithms make use of echo algorithms to detect deadlocks.

• This computation is superimposed on the underlying distributed computation.

• If this computation terminates, the initiator declares a deadlock.

• To detect a deadlock, a process sends out query messages along all the outgoing edges in

the WFG.

• These queries are successively propagated (i.e., diffused) through the edges of the WFG.

• When a blocked process receives first query message for a particular deadlock detection

initiation, it does not send a reply message until it has received a reply message for

every query it sent.

•

Downloaded from EnggTrCeSe35.51c–oDmISTRIBUTED COMPUTING

back a reply message.

• The initiator of a deadlock detection detects a deadlock when it receives reply for every

query it had sent out.

Examples:Chandy–Misra–Haas algorithm for one OR model, Chandy–Herman algorithm

Global state detection-based algorithms

Global state detection based deadlock detection algorithms exploit the following facts:

1. A consistent snapshot of a distributed system can be obtained without freezing the

underlying computation.

2. If a stable property holds in the system before the snapshot collection is initiated, this

property will still hold in the snapshot.

Therefore, distributed deadlocks can be detected by taking a snapshot of the system and

examining it for the condition of a deadlock

MITCHELL AND MERRITT’S ALGORITHM FOR THE SINGLE-RESOURCE

MODEL

• This deadlock detection algorithm assumes a single resource model.

• This detects the local and global deadlocks each process has assumed two different

labels namely private and public each label is accountant the process id guarantees

only one process will detect a deadlock.

• Probes are sent in the opposite direction to the edges of the WFG.

• When a probe initiated by a process comes back to it, the process declares deadlock.

Features:
1. This algorithm can

be improvised by including priorities, and the lowest priority process in a cycle

detects deadlock and aborts.

2. In this algorithm, a process that is detected in deadlock is aborted spontaneously, even

though under this assumption phantom deadlocks cannot be excluded. It can be

shown, however, that only genuine deadlocks will be detected in the absence of

spontaneous aborts.

Each node of the WFG has two local variables, called labels:

1. a private label, which is unique to the node at all times, though it is not constant.

2. a public label, which can be read by other processes and which may not be unique.

Each process is represented as u/v where u and u are the public and private labels,
respectively. Initially, private and public labels are equal for each process. A global WFG

is maintained and it defines the entire state sof the system.

• The algorithm is defined by the four state transitions as shown in Fig.3.10, where z =

inc(u, v), and inc(u, v) yields aunique label greater than both u and v labels that are

notshown do not change.

• The transitions in the defined by the algorithm are block, activate , transmit and

detect.

• Block creates an edge in the WFG.

• Two messages are needed, one resource request and onemessage back to the blocked

process to inform it of thepublic label of the process it is waiting for.

• Activate denotes that a process has acquired the resourcefrom the process it was

M.A.M COLLEGE OF ENGINEERING

EnggTree.com waiting for.

• Transmit propagates larger labels in the opposite directionof the edges by sending a

probe message.

Fig 3.10: Four possible state transitions

• Detect means that the probe with the private label of some process has returned to it,

indicating a deadlock.

• This algorithm can easily be extended to include priorities, so that whenever a

deadlock occurs, the lowest priority process gets aborted.

• This priority based algorithm has two phases.

1. The first phase is almost identical to the algorithm.

Message Complexity:

If we assume that a deadlock persists long enough to be detected, the worst-case complexity
of the algorithm is s(s - 1)/2 Transmit steps, where s is the number of processes in the cycle.

CHANDY–MISRA–HAAS ALGORITHM FOR THE AND MODEL

• This is considered an edge-chasing, probe-based algorithm.

• It is also considered one of the best deadlock detection algorithms for distributed

systems.

• If a process makes a request for a resource which fails or times out, the process

generates a probe message and sends it to each of the processes holding one or more

of its requested resources.

• This algorithm uses a special message called probe, which is a triplet (i, j,k), denoting

that it belongs to a deadlock detection initiated for process Pi andit is being sent by the

home site of process Pj to the home site of process Pk.

• Each probe message contains the following information:

➢ the id of the process that is blocked (the one that initiates the probe message);

➢ the id of the process is sending this particular version of the probe message;

➢ the id of the process that should receive this probe message.

• A probe message travels along the edges of the global WFG graph, and a deadlock is

detected when a probe message returns to the process that initiated it.

• Process Pj is said to be locally dependent upon process Pk if Pj is dependent upon

Pkand both the processes are on the same site.

• When a process receives a probe message,it checks to see if it is also waiting for

resources

• If not, it is currently using the needed resource and will eventually finish and release

the resource.

• If it is waiting for resources, it passes on the probe message to all processes it knows

to be holding resources it has itself requested.

• The process first modifies the probe message, changing the sender and receiver ids.

• If a process receives a probe message that it recognizes as having initiated,it knows

there is a cycle in the system and thus, deadlock.

Data structures

Each process Pi maintains a boolean array, dependenti, where dependent(j) is true only if Pi

knows that Pj is dependent on it. Initially, dependenti (j) is false for all i and j.

•

• In the algorithm, one probe message is sent on every edge of the WFG which

connects processes on two sites.

• The algorithm exchanges at most m(n − 1)/2 messages to detect a deadlock that

involves m processes and spans over n sites.

• The size of messages is fixed and is very small (only three integer words).

• The delay in detecting a deadlock is O(n).

Advantages:

• It is easy to implement.

• Each probe message is of fixed length.

• There is very little computation.

• There is very little overhead.

• There is no need to construct a graph, nor to pass graph information to other sites.

• This algorithm does not find false (phantom) deadlock.

• There is no need for special data structures.

CHANDY–MISRA–HAAS ALGORITHM FOR THE OR MODEL

• A blocked process determines if it is deadlocked by initiating a diffusion computation.

• Two types of messages are used in a diffusion computation:

➢ query(i, j, k)

➢ reply(i, j, k)

denoting that they belong to a diffusion computation initiated by a process pi and are being

sent from process pj to process pk.

• A blocked process initiates deadlock detection by sending query messages to all

processes in its dependent set.

• If an active process receives a query or reply message, it discards it.

• When a blocked process Pk receives a query(i, j, k) message, it takes the following

actions:

1. If this is the first query message received by Pk for the deadlock detection

initiated by Pi, then it propagates the query to all the processes in its dependent

set and sets a local variable numk (i) to the number of query messages sent.

2. If this is not the engaging query, then Pk returns a reply message to it

immediately provided Pk has been continuously blocked since it received the

corresponding engaging query. Otherwise, it discards the query.

• Process Pk maintains a boolean variable waitk(i) that denotes the fact that it

has been continuously blocked since it received the last engaging query from

process Pi.

• When a blocked process Pk receives a reply(i, j, k) message, it decrements

numk(i) only if waitk(i) holds.

• A process sends a reply message in response to an engaging query only after it

has received a reply to every query message it has sent out for this engaging

query.

• The initiator process detects a deadlock when it has received reply messages to

all the query messages it has sent out.

Fig 3.12: Chandy–Misra–Haas algorithm for the OR model

Performance analysis

• For every deadlock detection, the algorithm exchanges e query messages ande reply

messages, where e = n(n – 1) is the number of edges.

CS3551 DISTRIBUTED COMPUTING

UNIT IV

CONSENSUS AND RECOVERY

Consensusand agreement algorithms: Problem definition – Overview of results – Agreement in

a failure – free system (Synchronous and Asynchronous) – Agreement in synchronous systems

with failures. Check pointing and rollback recovery: Introduction – Background and definitions

– Issues in failure recovery – Checkpoint-based recovery – Coordinated check pointing algorithm

– Algorithm for asynchronous check pointing and recovery.

CONSENSUS PROBLEM IN ASYNCHRONOUS SYSTEMS.

Table: Overview of results on agreement.

f denotes number of failure-prone processes. n is the total number of processes.

Failure

Mode

Synchronous system

(message-passing and

shared memory)

Asynchronous

system

(message-passing and

shared memory)

No

Failure

agreement attainable;

common knowledge

attainablwe ww.EnggTree.com

agreement attainable;

concurrent common

knowledge

Crash

Failure

agreement attainable

f < n processes

agreement not

attainable

Byzantie

Failure

agreement attainable

f ≤ [(n - 1)/3] Byzantine

processes

agreement not

attainable

In a failure-free system, consensus can be attained in a straightforward manner.

Consensus Problem (all processes have an initial value)

Agreement: All non-faulty processes must agree on the same (single) value.

Validity: If all the non-faulty processes have the same initial value, then the agreed upon value

by all the non-faulty processes must be that same value.

Termination: Each non-faulty process must eventually decide on a value.

Consensus Problem in Asynchronous Systems.

The overhead bounds are for the given algorithms, and not necessarily tight bounds for the

problem.

CS3551 DISTRIBUTED COMPUTING

Solvable

Variants

Failure model

and overhead

Definition

Reliable

broadcast

Crash Failure, n > f

(MP)

Validity,

Agreement,

Integrity conditions

k-set

consensus

Crash Failure, f < k

< n. (MP and SM)

size of the set of

values agreed upon

must be less than k

C-agreement Crash Failure, n ≥

5f + 1 (MP)

values agreed upon

are within ɛ of each

other

Renaming up to f fail-stop

processes, n ≥ 2f +

1 (MP)

Crash Failure, f ≤ n

- 1 (SM)

select a unique name

from a set of names

Circumventing the impossibility results for consensus in asynchronous

systems:
CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

STEPS FOR BYZANTINEGENERALS (ITERATIVE

FORMULATION), SYNCHRONOUS, MESSAGE-PASSING:

Byzantine Agreement (single source has an initial value) Agreement:

All non faulty processes must agree on the same value.

Validity: If the source process is non-faulty, then the agreed upon value by all the non- faulty

processes must be the same as the initial value of the source.

CS3551 DISTRIBUTED COMPUTING

STEPS FOR BYZANTINE GENERALS (RECURSIVE FORMULATION),

SYNCHRONOUS, MESSAGE-PASSING:

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CODE FOR THE PHASE KING ALGORITHM:

Each phase has a unique "phase king" derived, say, from PID. Each phase has two rounds:

• 1 in 1st round, each process sends its estimate to all other processes.

• 2 in 2nd round, the "Phase king" process arrives at an estimate based on the values it

received in 1st round, and broadcasts its new estimate to all others.

Fig. Message pattern for the phase-king algorithm.
CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

PHASE KING ALGORITHM CODE:

(f + 1) phases, (f + 1)[(n - 1)(n + 1)] messages, and can tolerate up to f < dn=4e malicious processes

Correctness Argument

• 1 Among f + 1 phases, at least one phase k where phase-king is non-malicious.

• 2 In phase k, all non-malicious processes Pi and Pj will have same estimate of consensus

value as Pk does.

• Pi and Pj use their own majority values. Pi 's mult > n=2 + f)

• Pi uses its majority value; Pj uses phase-king's tie-breaker value. (Pi’s mult > n=2 + f ,

Pj 's mult > n=2 for same value)

• Pi and Pj use the phase-king's tie-breaker value. (In the phase in which Pk is non-

malicious, it sends same value to Pi and Pj)

In all 3 cases, argue that Pi and Pj end up with same value as estimate

CNCET
• If all non-malicious processes have the value x at the start of a phase, they will continue

to have x as the consensus value at the end of the phase.

CODE FOR THE EPSILON CONSENSUS (MESSAGE-PASSING, ASYNCHRONOUS):

Agreement: All non-faulty processes must make a decision and the values decided upon by any

two non-faulty processes must be within range of each other.

Validity: If a non-faulty process Pi decides on some value vi , then that value must be within the

range of values initially proposed by the processes.

Termination: Each non-faulty process must eventually decide on a value. The algorithm for the

message-passing model assumes n ≥ 5f + 1, although the problem is solvable for n > 3f + 1.

• Main loop simulates sync rounds.

• Main lines (1d)-(1f): processes perform all-all msg exchange

• Process broadcasts its estimate of consensus value, and awaits n - f similar

• msgs from other processes

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

• the processes' estimate of the consensus value converges at a particular rate,

• until it is _ from any other processes estimate.

• # rounds determined by lines (1a)-(1c).

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE, COMPARE &

SWAP:

Wait-free Shared Memory Consensus using Shared Objects:

Not possible to go from bivalent to univalent state if even a single failure is allowed. Difficulty is

not being able to read & write a variable atomically.

• It is not possible to reach consensus in an asynchronous shared memory system using

Read/Write atomic registers, even if a single process can fail by crashing.

• There is no wait-free consensus algorithm for reaching consensus in an asynchronous

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

shared memory system using Read/Write atomic registers.

To overcome these negative results:

• Weakening the consensus problem, e.g., k-set consensus, approximate consensus, and

renaming using atomic registers.

• Using memory that is stronger than atomic Read/Write memory to design wait- free

consensus algorithms. Such a memory would need corresponding access primitives.

Are there objects (with supporting operations), using which there is a wait-free (i.e., (n -1)- crash

resilient) algorithm for reaching consensus in a n-process system? Yes, e.g., Test&Set, Swap,

Compare&Swap. The crash failure model requires the solutions to be wait-free.

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE:

WAIT-FREE CONSENSUS USING COMPARE & SWAP:

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

NONBLOCKING UNIVERSAL ALGORITHM:

Universality of Consensus Objects

An object is defined to be universal if that object along with read/write registers can simulate

any other object in a wait-free manner. In any system containing up to k processes, an object X

such that CN(X) = k is universal.

For any system with up to k processes, the universality of objects X with consensus number k is

shown by giving a universal algorithm to wait-free simulate any object using objects of type X

and read/write registers.

This is shown in two steps.

• 1 A universal algorithm to wait-free simulate any object whatsoever using read/write

registers and arbitrary k-processor consensus objects is given. This is the main step.

• 2 Then, the arbitrary k-process consensus objects are simulated with objects of type X,

having consensus number k. This trivially follows after the first step.

A nonblocking operation, in the context of shared memory operations, is an operation that may

not complete itself but is guaranteed to complete at least one of the pending operations in a

finite number of steps.

Nonblocking Universal Algorithm:

The linked list stores the linearized sequence of operations and states following each operation.

Operations to the arbitrary object Z are simulated in a nonblocking way using an arbitrary

consensus object (the field op.next in each record) which is accessed via the Decide call.

Each process attempts to thread its own operation next into the linked list.

• There are as many universal objects as there are operations to thread.

• A single pointer/counter cannot be used instead of the array Head. Because reading and

updating the pointer cannot be done atomically in a wait-free manner.

• Linearization of the operations given by the sequence number. As algorithm is

nonblock

CS3551 DISTRIBUTED COMPUTING

Check pointing and rollback recovery: Introduction

• Rollback recovery protocols restore the system back to a consistent state after a failure,

• It achieves fault tolerance by periodically saving the state of a process during the failure-

free execution

• It treats a distributed system application as a collection of processes that communicate

over a network

Checkpoints

The saved state is called a checkpoint, and the procedure of restarting from a previously check

pointed state is called rollback recovery. A checkpoint can be saved on either the stable storage

or the volatile storage

Why is rollback recovery of distributed systems complicated?

Messages induce inter-process dependencies during failure-free operation

Rollback propagation

The dependencies among messages may force some of the processes that did not fail to roll back.

This phenomenon of cascaded rollback is called the domino effect.

Uncoordinated check pointing
CNCET

If each process takes its checkpoints independently, then the system cannot avoid the domino

effect – this scheme is called independent or uncoordinated check pointing

Techniques that avoid domino effect

1. Coordinated check pointing rollback recovery - Processes coordinate their checkpoints to

form a system-wide consistent state

2. Communication-induced check pointing rollback recovery - Forces each process to take

checkpoints based on information piggybacked on the application.

3. Log-based rollback recovery - Combines check pointing with logging of non-

deterministic events • relies on piecewise deterministic (PWD) assumption.

Background and definitions

System model

• A distributed system consists of a fixed number of processes, P1, P2,…_ PN , which

communicate only through messages.

• Processes cooperate to execute a distributed application and interact with the outside world

by receiving and sending input and output messages, respectively.

• Rollback-recovery protocols generally make assumptions about the reliability of theinter-

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

process communication.

• Some protocols assume that the communication uses first-in-first-out (FIFO) order, while

other protocols assume that the communication subsystem can lose, duplicate, or reorder

messages.

• Rollback-recovery protocols therefore must maintain information about the internal

interactions among processes and also the external interactions with the outside world.

An example of a distributed system with three processes.

A local checkpoint

• A local check point is a snapshot of the state of the process at a given instance

• Assumption

– A process stores all local checkpoints on the stable storage

– A process is able to roll back to any of its existing local checkpoints

• 𝐶𝑖,𝑘 – The kth local checkpoint at process 𝑃𝑖

• 𝐶𝑖,0 – A process 𝑃𝑖 takes a checkpoint 𝐶𝑖,0 before it starts execution

Consistent states

• A global state of a distributed system is a collection of the individual states of all

participating processes and the states of the communication channels

• Consistent global state

– a global state that may occur during a failure-free execution of distribution of

distributed computation

– if a process‟s state reflects a message receipt, then the state of the corresponding

sender must reflect the sending of the message

• A global checkpoint is a set of local checkpoints, one from each process

CS3551 DISTRIBUTED COMPUTING

CNCET

• A consistent global checkpoint is a global checkpoint such that no message is sent by a

process after taking its local point that is received by another process before taking its

checkpoint.

• For instance, Figure shows two examples of global states.

• The state in fig (a) is consistent and the state in Figure (b) is inconsistent.

• Note that the consistent state in Figure (a) shows message m1 to have been sent but not

yet received, but that is alright.

• The state in Figure (a) is consistent because it represents a situation in which every

message that has been received, there is a corresponding message send event.

• The state in Figure (b) is inconsistent because process P2 is shown to have received m2

but the state of process P1 does not reflect having sent it.

• Such a state is impossible in any failure-free, correct computation. Inconsistent states

occur because of failures.

Interactions with outside world

A distributed system often interacts with the outside world to receive input data or deliver the

outcome of a computation. If a failure occurs, the outside world cannot be expected to roll back.

For example, a printer cannot roll back the effects of printing a character

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Outside World Process (OWP)

• It is a special process that interacts with the rest of the system through message passing.

• It is therefore necessary that the outside world see a consistent behavior of the system

despite failures.

• Thus, before sending output to the OWP, the system must ensure that the state from which

the output is sent will be recovered despite any future failure.

A common approach is to save each input message on the stable storage before allowing the

application program to process it.

An interaction with the outside world to deliver the outcome of a computation is shown on the

process-line by the symbol “||”.

Different types of Messages

1. In-transit message

• messages that have been sent but not yet received

2. Lost messages

• messages whose “send‟ is done but “receive‟ is undone due to rollback

CNCET
3. Delayed messages

• messages whose “receive‟ is not recorded because the receiving process was

either down or the message arrived after rollback

4. Orphan messages

• messages with “receive‟ recorded but message “send‟ not recorded

• do not arise if processes roll back to a consistent global state

5. Duplicate messages

• arise due to message logging and replaying during process recovery

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

In-transit messages

In Figure , the global state {C1,8 , C2, 9 , C3,8, C4,8} shows that message m1 has been sent but

not yet received.

Delayed messages

Messages whose receive is not recorded because the receiving process was either down or the

message arrived after the rollback of the receiving process, are called delayed messages. For

example, messages m2 and m5 in Figure are delayed messages.

Lost messages

Messages whose send is not undone but receive is undone due to rollback are called lostmessages.

This type of messages occurs when the process rolls back to a checkpoint prior to reception of the

message while the sender does not rollback beyond the send operation of the message. In Figure ,

message m1 is a lost message.

Duplicate messages

• Duplicate messages arise due to message logging and replaying during process

recovery. For example, in Figure, message m4 was sent and received before the

rollback. However, due to the rollback of process P4 to C4,8 and process P3 to C3,8,

both send and receipt of message m4 are undone.

CS3551 DISTRIBUTED COMPUTING

• When process P3 restarts from C3,8, it will resend message m4.

• Therefore, P4 should not replay message m4 from its log.

• If P4 replays message m4, then message m4 is called a duplicate message.

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Issues in failure recovery

In a failure recovery, we must not only restore the system to a consistent state, but also

appropriately handle messages that are left in an abnormal state due to the failure and recovery

The computation comprises of three processes Pi, Pj , and Pk, connected through a communication

network. The processes communicate solely by exchanging messages over fault- free, FIFO

communication channels.

CNCET

Processes Pi, Pj , and Pk have taken checkpoints

• The rollback of process 𝑃𝑖 to checkpoint 𝐶𝑖,1 created an orphan message H

• Orphan message I is created due to the roll back of process 𝑃𝑗 to checkpoint 𝐶𝑗,1

• Messages C, D, E, and F are potentially problematic

– Message C: a delayed message

– Message D: a lost message since the send event for D is recorded in the

restored state for 𝑃𝑗, but the receive event has been undone at process 𝑃𝑖.

– Lost messages can be handled by having processes keep a message log of all

the sent messages

– Messages E, F: delayed orphan messages. After resuming execution from their

checkpoints, processes will generate both of these messages

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Checkpoint-based recovery

Checkpoint-based rollback-recovery techniques can be classified into three categories:

1. Uncoordinated checkpointing

2. Coordinated checkpointing

3. Communication-induced checkpointing

1. Uncoordinated Checkpointing

• Each process has autonomy in deciding when to take checkpoints

• Advantages

The lower runtime overhead during normal execution

• Disadvantages

1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a

consistent set of checkpoints

3. Not suitable for application with frequent output commits

• The processes record the dependencies among their checkpoints caused by message

exchange during failure-free operation

• The following direct dependency tracking technique is commonly used in uncoordinated

checkpointing.

Direct dependency tracking technique

• Assume each process 𝑃𝑖 starts its execution with an initial checkpoint 𝐶𝑖,0

• 𝐼𝑖,𝑥 : checkpoint interval, interval between 𝐶𝑖,𝑥−1 and 𝐶𝑖,𝑥

• When 𝑃𝑗 receives a message m during 𝐼𝑗,𝑦 , it records the dependency from 𝐼𝑖,𝑥 to 𝐼𝑗,𝑦,

which is later saved onto stable storage when 𝑃𝑗 takes 𝐶𝑗,𝑦

CS3551 DISTRIBUTED COMPUTING

• When a failure occurs, the recovering process initiates rollback by broadcasting a

dependency request message to collect all the dependency information maintained by each

process.

• When a process receives this message, it stops its execution and replies with the

dependency information saved on the stable storage as well as with the dependency

information, if any, which is associated with its current state.
CNCET

• The initiator then calculates the recovery line based on the global dependency information

and broadcasts a rollback request message containing the recovery line.

• Upon receiving this message, a process whose current state belongs to the recovery line

simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by

the recovery line.

2. Coordinated Checkpointing

In coordinated checkpointing, processes orchestrate their checkpointing activities so that all

local checkpoints form a consistent global state

Types

1. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan

messages, it remains blocked until the entire checkpointing activity is complete

Disadvantages: The computation is blocked during the checkpointing

2. Non-blocking Checkpointing: The processes need not stop their execution while taking

checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process

from receiving application messages that could make the checkpoint inconsistent.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

Example (a) : Checkpoint inconsistency

• Message m is sent by 𝑃0 after receiving a checkpoint request from the checkpoint

coordinator

• Assume m reaches 𝑃1 before the checkpoint request

• This situation results in an inconsistent checkpoint since checkpoint 𝐶1,𝑥 shows the receipt

of message m from 𝑃0, while checkpoint 𝐶0,𝑥 does not show m being sent from

𝑃0

Example (b) : A solution with FIFO channels

• If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint

message on each channel by a checkpoint request, forcing each process to take a checkpoint

before receiving the first post-checkpoint message

Impossibility of min-process non-blocking checkpointing

• A min-process, non-blocking checkpointing algorithm is one that forces only a minimum

number of processes to take a new checkpoint, and at the same time it does not force any

process to suspend its computation.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Algorithm

• The algorithm consists of two phases. During the first phase, the checkpoint initiator

identifies all processes with which it has communicated since the last checkpoint and sends

them a request.

• Upon receiving the request, each process in turn identifies all processes it has

communicated with since the last checkpoint and sends them a request, and so on, until

no more processes can be identified.

• During the second phase, all processes identified in the first phase take a checkpoint. The

result is a consistent checkpoint that involves only the participating processes.

• In this protocol, after a process takes a checkpoint, it cannot send any message until the

second phase terminates successfully, although receiving a message after the checkpoint

has been taken is allowable.

3. Communication-induced Checkpointing

Communication-induced checkpointing is another way to avoid the domino effect, while allowing

processes to take some of their checkpoints independently. Processes may be forced to take

additional checkpoints

Two types of checkpoints
CNCET

1. Autonomous checkpoints

2. Forced checkpoints

The checkpoints that a process takes independently are called local checkpoints, while those that

a process is forced to take are called forced checkpoints.

• Communication-induced check pointing piggybacks protocol- related information on

each application message

• The receiver of each application message uses the piggybacked information to determine

if it has to take a forced checkpoint to advance the global recovery line

• The forced checkpoint must be taken before the application may process the contents of

the message

• In contrast with coordinated check pointing, no special coordination messages are

exchanged

Two types of communication-induced checkpointing

1. Model-based checkpointing

2. Index-based checkpointing.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Model-based checkpointing

• Model-based checkpointing prevents patterns of communications and checkpoints

that could result in inconsistent states among the existing checkpoints.

• No control messages are exchanged among the processes during normal operation. All

information necessary to execute the protocol is piggybacked on application messages

• There are several domino-effect-free checkpoint and communication model.

• The MRS (mark, send, and receive) model of Russell avoids the domino effect by

ensuring that within every checkpoint interval all message receiving events precede all

message-sending events.

Index-based checkpointing.

• Index-based communication-induced checkpointing assigns monotonically increasing

indexes to checkpoints, such that the checkpoints having the same index at different

processes form a consistent state.

Log-based rollback recovery

A log-based rollback recovery makes use of deterministic and nondeterministic events in a

computation.
CNCET

Deterministic and non-deterministic events

• Log-based rollback recovery exploits the fact that a process execution can be modeled

as a sequence of deterministic state intervals, each starting with the execution of a non-

deterministic event.

• A non-deterministic event can be the receipt of a message from another process or an

event internal to the process.

• Note that a message send event is not a non-deterministic event.

• For example, in Figure, the execution of process P0 is a sequence of four deterministic

intervals. The first one starts with the creation of the process, while the remaining three

start with the receipt of messages m0, m3, and m7, respectively.

• Send event of message m2 is uniquely determined by the initial state of P0 and by the

receipt of message m0, and is therefore not a non-deterministic event.

• Log-based rollback recovery assumes that all non-deterministic events can be identified

and their corresponding determinants can be logged into the stable storage.

• Determinant: the information need to “replay” the occurrence of a non-deterministic

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

event (e.g., message reception).

• During failure-free operation, each process logs the determinants of all non-

deterministic events that it observes onto the stable storage. Additionally, each process

also takes checkpoints to reduce the extent of rollback during recovery.

The no-orphans consistency condition

Let e be a non-deterministic event that occurs at process p. We define the following:

• Depend(e): the set of processes that are affected by a non-deterministic event e.

• Log(e): the set of processes that have logged a copy of e’s determinant in their volatile

memory.

• Stable(e): a predicate that is true if e’s determinant is logged on the stable storage.

Suppose a set of processes crashes. A process p in becomes an orphan when p itself does

not fail and p’s state depends on the execution of a nondeterministic event e whose determinant

cannot be recovered from the stable storage or from the volatile memory of a surviving process.

storage or from the volatile memory of a surviving process. Formally, it can be stated as follows

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Types

1. Pessimistic Logging

• Pessimistic logging protocols assume that a failure can occur after any non-deterministic

event in the computation. However, in reality failures are rare

• Pessimistic protocols implement the following property, often referred to as synchronous logging,

which is a stronger than the always-no-orphans condition

• Synchronous logging

• Thai is,if an event has not been logged on the stable storage, then no process can depend

on it.

Example:

• Suppose processes 𝑃1 and 𝑃2 fail as shown, restart from checkpoints B and C, and roll

forward using their determinant logs to deliver again the same sequence of messages as in

the pre-failure execution

• Once the recovery is complete, both processes will be consistent with the state of 𝑃0

that includes the receipt of message 𝑚7 from 𝑃1

CS3551 DISTRIBUTED COMPUTING

• Disadvantage: performance penalty for synchronous logging

• Advantages:

• immediate output commit

• restart from most recent checkpoint

• recovery limited to failed process(es)

• simple garbage collection

• Some pessimistic logging systems reduce the overhead of synchronous logging without

relying on hardware. For example, the sender-based message logging (SBML) protocol

keeps the determinants corresponding to the delivery of each message m in the volatile

memory of its sender.

• The sender-based message logging (SBML) protocol

Two steps.

1. First, before sending m, the sender logs its content in volatile memory.

2. Then, when the receiver of m responds with an acknowledgment that includes the order

in which the message was delivered, the sender adds to the determinant the ordering
CNCET

information.

2. Optimistic Logging

• Processes log determinants asynchronously to the stable storage

• Optimistically assume that logging will be complete before a failure occurs

• Do not implement the always-no-orphans condition

• To perform rollbacks correctly, optimistic logging protocols track causal dependencies

during failure free execution

• Optimistic logging protocols require a non-trivial garbage collection scheme

• Pessimistic protocols need only keep the most recent checkpoint of each process, whereas

optimistic protocols may need to keep multiple checkpoints for each process

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

• Consider the example shown in Figure Suppose process P2 fails before the determinant for

m5 is logged to the stable storage. Process P1 then becomes an orphan process and must

roll back to undo the effects of receiving the orphan message m6. The rollback of P1

further forces P0 to roll back to undo the effects of receiving message m7.

• Advantage: better performance in failure-free execution

• Disadvantages:

• coordination required on output commit

• more complex garbage collection

• Since determinants are logged asynchronously, output commit in optimistic logging

protocols requires a guarantee that no failure scenario can revoke the output. For example,

if process P0 needs to commit output at state X, it must log messages m4 andm7 to the

stable storage and ask P2 to log m2 and m5. In this case, if any process fails, the

computation can be reconstructed up to state X.

3. Causal Logging

• Combines the advantages of both pessimistic and optimistic logging at the expense of a more

complex recovery protocol
CNCET

• Like optimistic logging, it does not require synchronous access to the stable storage except

during output commit

• Like pessimistic logging, it allows each process to commit output independently and never

creates orphans, thus isolating processes from the effects of failures at other processes

• Make sure that the always-no-orphans property holds

• Each process maintains information about all the events that have causally affected its state

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

• Consider the example in Figure Messages m5 and m6 are likely to be lost on the failures

of P1 and P2 at the indicated instants. Process

• P0 at state X will have logged the determinants of the nondeterministic events that

causally precede its state according to Lamport’s happened-before relation.
CNCET

• These events consist of the delivery of messages m0, m1, m2, m3, and m4.

• The determinant of each of these non-deterministic events is either logged on the stable

storage or is available in the volatile log of process P0.

• The determinant of each of these events contains the order in which its original receiver

delivered the corresponding message.

• The message sender, as in sender-based message logging, logs the message content. Thus,

process P0 will be able to “guide” the recovery of P1 and P2 since it knows the order in

which P1 should replay messages m1 and m3 to reach the state from which P1 sent message

m4.

• Similarly, P0 has the order in which P2 should replay message m2 to be consistent with

both P0 and P1.

• The content of these messages is obtained from the sender log of P0 or regenerated

deterministically during the recovery of P1 and P2.

• Note that information about messages m5 and m6 is lost due to failures. These messages

may be resent after recovery possibly in a different order.

• However, since they did not causally affect the surviving process or the outside world, the

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

resulting state is consistent.

• Each process maintains information about all the events that have causally affected its state.

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

KOO AND TOUEG COORDINATED CHECKPOINTING AND RECOVERY

TECHNIQUE:

• Koo and Toueg coordinated check pointing and recovery technique takes a consistent set

of checkpoints and avoids the domino effect and livelock problems during the recovery.

• Includes 2 parts: the check pointing algorithm and the recovery algorithm

A. The Checkpointing Algorithm

The checkpoint algorithm makes the following assumptions about the distributed system:

• Processes communicate by exchanging messages through communication channels.

• Communication channels are FIFO.

• Assume that end-to-end protocols (the sliding window protocol) exist to handle with

message loss due to rollback recovery and communication failure.

• Communication failures do not divide the network.

The checkpoint algorithm takes two kinds of checkpoints on the stable storage: Permanent and

Tentative.

CNCET
A permanent checkpoint is a local checkpoint at a process and is a part of a consistent global

checkpoint.

A tentative checkpoint is a temporary checkpoint that is made a permanent checkpoint on

the successful termination of the checkpoint algorithm.

The algorithm consists of two phases.

First Phase

1. An initiating process Pi takes a tentative checkpoint and requests all other processes to take

tentative checkpoints. Each process informs Pi whether it succeeded in taking a tentative

checkpoint.

2. A process says “no” to a request if it fails to take a tentative checkpoint

3. If Pi learns that all the processes have successfully taken tentative checkpoints, Pi decides

that all tentative checkpoints should be made permanent; otherwise, Pi decides that all the

tentative checkpoints should be thrown-away.

Second Phase

1. Pi informs all the processes of the decision it reached at the end of the first phase.

2. A process, on receiving the message from Pi will act accordingly.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

3. Either all or none of the processes advance the checkpoint by taking permanent

checkpoints.

4. The algorithm requires that after a process has taken a tentative checkpoint, it cannot

send messages related to the basic computation until it is informed of Pi’s decision.

Correctness: for two reasons

i. Either all or none of the processes take permanent checkpoint

ii. No process sends message after taking permanent checkpoint

An Optimization

The above protocol may cause a process to take a checkpoint even when it is not necessary for

consistency. Since taking a checkpoint is an expensive operation, we avoid taking checkpoints.

B. The Rollback Recovery Algorithm

The rollback recovery algorithm restores the system state to a consistent state after a failure. The

rollback recovery algorithm assumes that a single process invokes the algorithm. It assumes that

the checkpoint and the rollback recovery algorithms are not invoked concurrently. The rollback

recovery algorithm has two phases.

First Phase
CNCET

1. An initiating process Pi sends a message to all other processes to check if they all are

willing to restart from their previous checkpoints.

2. A process may reply “no” to a restart request due to any reason (e.g., it is already

participating in a check pointing or a recovery process initiated by some other process).

3. If Pi learns that all processes are willing to restart from their previous checkpoints, Pi

decides that all processes should roll back to their previous checkpoints. Otherwise,

4. Pi aborts the roll back attempt and it may attempt a recovery at a later time.

Second Phase

1. Pi propagates its decision to all the processes.

2. On receiving Pi’s decision, a process acts accordingly.

3. During the execution of the recovery algorithm, a process cannot send messages related

to the underlying computation while it is waiting for Pi’s decision.

Correctness: Resume from a consistent state

Optimization: May not to recover all, since some of the processes did not change anything

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

The above protocol, in the event of failure of process X, the above protocol will require

processes X, Y, and Z to restart from checkpoints x2, y2, and z2, respectively.

CS3551 DISTRIBUTED COMPUTING

ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY:

The algorithm of Juang and Venkatesan for recovery in a system that uses asynchronous check

pointing.

A. System Model and Assumptions

The algorithm makes the following assumptions about the underlying system:

• The communication channels are reliable, deliver the messages in FIFO order and have

infinite buffers.

• The message transmission delay is arbitrary, but finite.

• Underlying computation/application is event-driven: process P is at state s, receives

message m, processes the message, moves to state s’ and send messages out. So the

triplet (s, m, msgs_sent) represents the state of P

Two type of log storage are maintained:

– Volatile log: short time to access but lost if processor crash. Move to stable log

periodically.

– Stable log: longer time to access but remained if crashed

A. Asynchronous Check pointing
CNCET

– After executing an event, the triplet is recorded without any synchronization with

other processes.

– Local checkpoint consist of set of records, first are stored in volatile log, then

moved to stable log.

B. The Recovery Algorithm

Notations and data structure

The following notations and data structure are used by the algorithm:

• RCVDi←j(CkPti) represents the number of messages received by processor pi from processor

pj , from the beginning of the computation till the checkpoint CkPti.

• SENTi→j(CkPti) represents the number of messages sent by processor pi to processor pj , from

the beginning of the computation till the checkpoint CkPti.

Basic idea

• Since the algorithm is based on asynchronous check pointing, the main issue in the

recovery is to find a consistent set of checkpoints to which the system can be restored.

• The recovery algorithm achieves this by making each processor keep track of both the

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

number of messages it has sent to other processors as well as the number of messages it

has received from other processors.

• Whenever a processor rolls back, it is necessary for all other processors to find out if any

message has become an orphan message. Orphan messages are discovered by comparing

the number of messages sent to and received from neighboring processors.

For example, if RCVDi←j(CkPti) > SENTj→i(CkPtj) (that is, the number of messages received

by processor pi from processor pj is greater than the number of messages sent by processor pj to

processor pi, according to the current states the processors), then one or more messages at

processor pj are orphan messages.

The Algorithm

When a processor restarts after a failure, it broadcasts a ROLLBACK message that it had failed

Procedure RollBack_Recovery

processor pi executes the following:

STEP (a)

if processor pi is recovering after a failure then

CkPti := latest event logged in the stable storage
CNCET

else

CkPti := latest event that took place in pi {The latest event at pi can be either in stable or in

volatile storage.}

end if

STEP (b)

for k = 1 1 to N {N is the number of processors in the system} do

for each neighboring processor pj do

compute SENTi→j(CkPti)

send a ROLLBACK(i, SENTi→j(CkPti)) message to pj

end for

for every ROLLBACK(j, c) message received from a neighbor j do

if RCVDi←j(CkPti) > c {Implies the presence of orphan messages} then

find the latest event e such that RCVDi←j(e) = c {Such an event e may be in the volatile storage

or stable storage.}

CkPti := e

end if

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

end for

end for{for k}

D. An Example

Consider an example shown in Figure 2 consisting of three processors. Suppose processor Y

fails and restarts. If event ey2 is the latest checkpointed event at Y, then Y will restart from the

state corresponding to ey2.

Figure 2: An example of Juan-Venkatesan algorithm.

• Because of the broadcast nature of ROLLBACK messages, the recovery algorithm is

initiated at processors X and Z.

• Initially, X, Y, and Z set CkPtX ← ex3, CkPtY ← ey2 and CkPtZ ← ez2, respectively,

and X, Y, and Z send the following messages during the first iteration:

• Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

• X sends ROLLBACK(X,2) to Y and ROLLBACK(X,0) to Z;

• Z sends ROLLBACK(Z,0) to X and ROLLBACK(Z,1) to Y.

Since RCVDX←Y (CkPtX) = 3 > 2 (2 is the value received in the ROLLBACK(Y,2) message

from Y), X will set CkPtX to ex2 satisfying RCVDX←Y (ex2) = 1≤ 2.

Since RCVDZ←Y (CkPtZ) = 2 > 1, Z will set CkPtZ to ez1 satisfying RCVDZ←Y (ez1) = 1 ≤

1.

At Y, RCVDY←X(CkPtY) = 1 < 2 and RCVDY←Z(CkPtY) = 1 = SENTZ←Y (CkPtZ).

Y need not roll back further.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

In the second iteration, Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

Z sends ROLLBACK(Z,1) to Y and ROLLBACK(Z,0) to X;

X sends ROLLBACK(X,0) to Z and ROLLBACK(X, 1) to Y.

If Y rolls back beyond ey3 and loses the message from X that caused ey3, X can resend this

message to Y because ex2 is logged at X and this message available in the log. The second and

third iteration will progress in the same manner. The set of recovery points chosen at the end of

the first iteration, {ex2, ey2, ez1}, is consistent, and no further rollback occurs.

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

UNIT V

CLOUD COMPUTING

Definition of Cloud Computing – Characteristics of Cloud – Cloud Deployment Models –

Cloud Service Models – Driving Factors and Challenges of Cloud – Virtualization – Load

Balancing – Scalability and Elasticity – Replication – Monitoring – Cloud Services and

Platforms: Compute Services – Storage Services – Application Services

Definition of Cloud Computing

Cloud computing is on-demand access, via the internet, to computing resources

applications, servers (physical servers and virtual servers), data storage, development tools,

networking capabilities, and more—hosted at a remote data center managed by a cloud services

provider (or CSP). The CSP makes these resources available for a monthly subscription fee or

bills them according to usage.

Cloud computing is a virtualization-based technology that allows us to create,

configure, and customize applications via an internet connection. The cloud technology

includes a development platform, hard disk, software application, and database.

The term cloud refers to a network or the internet. It is a technology that uses remote
CNCET

servers on the internet to store, manage, and access data online rather than local drives. The

data can be anything such as files, images, documents, audio, video, and more.

Cloud Computing is defined as storing and accessing of data and computing services

over the internet. It doesn’t store any data on your personal computer. It is the on-demand

availability of computer services like servers, data storage, networking, databases, etc. The

main purpose of cloud computing is to give access to data centers to many users. Users can

also access data from a remote server.

Cloud computing decreases the hardware and software demand from the user’s side.

The only thing that user must be able to run is the cloud computing systems interface software,

which can be as simple as Web browser, and the Cloud network takes care of the rest. We all

have experienced cloud computing at some instant of time, some of the popular cloud services

we have used or we are still using are mail services like gmail, hotmail or yahoo etc.

Examples of Cloud Computing Services: AWS, Azure,

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Characteristics of Cloud

The characteristics of cloud computing are given below:

1) Agility

The cloud works in a distributed computing environment. It shares resources among users and

works very fast.

2) High availability and reliability

The availability of servers is high and more reliable because the chances of infrastructure

failure are minimum.

3) High Scalability

Cloud offers "on-demand" provisioning of resources on a large scale, without having engineers

for peak loads.

4) Multi-Sharing

With the help of cloud computing, multiple users and applications can work more efficiently

with cost reductions by sharing common infrastructure.

Cloud computing enables the users to access systems using a web browser regardless of their

location or what device they use e.g. PC, mobile phone, etc. As infrastructure is off-site

(typically provided by a third-party) and accessed via the Internet, users can connect from

anywhere.

6) Maintenance

Maintenance of cloud computing applications is easier, since they do not need to be installed

on each user's computer and can be accessed from different places. So, it reduces the cost also.

7) Low Cost

By using cloud computing, the cost will be reduced because to take the services of cloud

computing, IT company need not to set its own infrastructure and pay-as-per usage of

resources.

8) Services in the pay-per-use mode

Application Programming Interfaces (APIs) are provided to the users so that they can access

services on the cloud by using these APIs and pay the charges as per the usage of services.

CS3551 DISTRIBUTED COMPUTING

Cloud Deployment Models

The cloud deployment model identifies the specific type of cloud environment based

on ownership, scale, access, and the cloud’s nature and purpose. There are various deployment

models are based on the location and who manages the infrastructure.

Type of Cloud Deployment Model

Here are some important types of Cloud Deployment models:

• Private Cloud: Resource managed and used by the organization.

• Public Cloud: Resource available for the general public under the Pay as you go

model.

• Community Cloud: Resource shared by several organizations, usually in the same

industry.

• Hybrid Cloud: This cloud deployment model is partly managed by the service

provided and partly by the organization.

Public Cloud

CNCET

The public cloud is available to the general public, and resources are shared between

all users. They are available to anyone, from anywhere, using the Internet. The public cloud

deployment model is one of the most popular types of cloud.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

This computing model is hosted at the vendor’s data center. The public cloud model

makes the resources, such as storage and applications, available to the public over the

WWW. It serves all the requests; therefore, resources are almost infinite.

Characteristics of Public Cloud

Here are the essential characteristics of the Public Cloud:

• Uniformly designed Infrastructure

• Works on the Pay-as-you-go basis

• Economies of scale

• SLA guarantees that all users have a fair share with no priority

• It is a multitenancy architecture, so data is highly likely to be leaked

Advantages of Public Cloud Deployments

Here are the pros/benefits of the Public Cloud Deployment Model:

• Highly available anytime and anywhere, with robust permission and authentication

mechanism. CNCET

• There is no need to maintain the cloud.

• Does not have any limit on the number of users.

• The cloud service providers fully subsidize the entire Infrastructure. Therefore, you

don’t need to set up any hardware.

• Does not cost you any maintenance charges as the service provider does it.

• It works on the Pay as You Go model, so you don’t have to pay for items you don’t

use.

• There is no significant upfront fee, making it excellent for enterprises that require

immediate access to resources.

Disadvantages of Public Cloud Deployments

Here are the cons/drawbacks of the Public Cloud Deployment Model:

• It has lots of issues related to security.

• Privacy and organizational autonomy are not possible.

• You don’t control the systems hosting your business applications.

http://www/
http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Private Cloud Model

The private cloud deployment model is a dedicated environment for one user or customer.

You don’t share the hardware with any other users, as all the hardware is yours. It is a one-to-

one environment for single use, so there is no need to share your hardware with anyone else.

The main difference between private and public cloud deployment models is how you handle

the hardware. It is also referred to as “internal cloud,” which refers to the ability to access

systems and services within an organization or border.

Characteristics of Private Cloud

Here are the essential characteristics of the Private Cloud:

• It has a non-uniformly designed infrastructure.

• Very low risk of data leaks.

• Provides End-to-End Control.

• Weak SLA, but you can apply custom policies.

• Internal Infrastructure to manage resources easily.

Advantages of Private Cloud Deployments

Here are the pros/benefits of the Private Cloud Deployment Model:

CS3551 DISTRIBUTED COMPUTING

• You have complete command over service integration, IT operations, policies, and user

behavior.

• Companies can customize their solution according to market demands.

• It offers exceptional reliability in performance.

• A private cloud enables the company to tailor its solution to meet specific needs.

• It provides higher control over system configuration according to the company’s

requirements.

• Private cloud works with legacy systems that cannot access the public cloud.

• This Cloud Computing Model is small, and therefore it is easy to manage.

• It is suitable for storing corporate information that only permitted staff can access.

• You can incorporate as many security services as possible to secure your cloud.

Disadvantages of Private Cloud Deployments

Here are the cons/drawbacks of the Private Cloud Deployment Model:

• It is a fully on-premises-hosted cloud that requires significant capital to purchase and

maintain the necessary hardware.
CNCET

• Companies that want extra computing power must take extra time and money to scale

up their Infrastructure.

• Scalability depends on the choice of hardware.

Hybrid Cloud Model

A hybrid cloud deployment model combines public and private clouds. Creating a

hybrid cloud computing model means that a company uses the public cloud but owns on-

premises systems and provides a connection between the two. They work as one system, which

is a beneficial model for a smooth transition into the public cloud over an extended period.

Some companies cannot operate solely in the public cloud because of security concerns

or data protection requirements. So, they may select the hybrid cloud to combine the

requirements with the benefits of a public cloud. It enables on-premises applications with

sensitive data to run alongside public cloud applications.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Characteristics of Hybrid Cloud

Here are the Characteristics of the Hybrid Cloud:

• Provides betters security and privacy

• Offers improved scalability

• Simplifies data and application portability

Advantages of Hybrid Cloud Deployments

Here are the pros/benefits of the Hybrid Cloud Deployment Model:

• It gives the power of both public and private clouds.

• It offers better security than the Public Cloud.

• Public clouds provide scalability. Therefore, you can only pay for the extra capacity if

required.

• It enables businesses to be more flexible and to design personalized solutions that meet

their particular needs.

• Data is separated correctly, so the chances of data theft by attackers are considerably

reduced.

• It provides robust setup flexibility so that customers can customize their solutions to fit

their requirements.

CS3551 DISTRIBUTED COMPUTING

CNCET

Disadvantages of Hybrid Cloud Deployments

Here are the cons/drawbacks of the Hybrid Cloud Deployment Model:

• It is applicable only when a company has varied use or demand for managing the

workloads.

• Managing a hybrid cloud is complex, so if you use a hybrid cloud, you may spend too

much.

• Its security features are not good as the Private Cloud.

Community Cloud Model

Community clouds are cloud-based infrastructure models that enable multiple

organizations to share resources and services based on standard regulatory requirements. It

provides a shared platform and resources for organizations to work on their business

requirements. This Cloud Computing model is operated and managed by community members,

third-party vendors, or both. The organizations that share standard business requirements make

up the members of the community cloud.

Advantages of Community Cloud Deployments

Here are the pros/benefits of the Community Cloud Deployment Model:

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

• You can establish a low-cost private cloud.

• It helps you to do collaborative work on the cloud.

• It is cost-effective, as multiple organizations or communities share the cloud.

• You can share resources, Infrastructure, etc., with multiple organizations.

• It is a suitable model for both collaboration and data sharing.

• Gives better security than the public cloud.

• It offers a collaborative space that allows clients to enhance their efficiency.

Disadvantages of Community Cloud Deployments

Here are the cons/drawbacks of the Community Cloud Deployment Model:

• Because of its restricted bandwidth and storage capacity, community resources often

pose challenges.

• It is not a very popular and widely adopted cloud computing model.

• Security and segmentation are challenging to maintain.

Multi-cloud Model

CNCET

Multi-cloud computing refers to using public cloud services from many cloud service

providers. A company must run workloads on IaaS or PaaS in a multi-cloud configuration from

multiple vendors, such as Azure, AWS, or Google Cloud Platform.

There are many reasons an organization selects a multi-cloud strategy. Some use it to

avoid vendor lock-in problems, while others combat shadow IT through multi-cloud

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

deployments. So, employees can still benefit from a specific public cloud service if it does not

meet strict IT policies.

Benefits of Multi-Cloud Deployment Model

Here are the pros/benefits of the Multi-Cloud Deployment Model:

• A multi-cloud deployment model helps organizations choose the specific services that

work best for them.

• It provides a reliable architecture.

• With multi-cloud models, companies can choose the best Cloud service provider based

on contract options, flexibility with payments, and customizability of capacity.

• It allows you to select cloud regions and zones close to your clients.

Disadvantages of Multi-Cloud Deployments

Here are the cons/drawbacks of the Multi-Cloud Deployment Model:

• Multi-cloud adoption increases the complexity of your business.

• Comparison of Top Cloud Deployment Models

Parameters Public Private Community Hybrid

Setup and

use

Easy Need help

from a

professional

IT team.

Require a

professional

IT team.

Require a

profession

al IT team.

Scalability
and
Elasticity

Very

High

Low Moderate High

Data
Control

Little to
none

Very High Relatively
High

High

Security

and

privacy

Very

low

Very high High Very high

Reliability Low High Higher High

Demand

for in-
house
Software

No Very high in-

house
software
requirement

No In-house

software is

not a must.

CS3551 DISTRIBUTED COMPUTING

How to select the suitable Cloud Deployment Models

Companies are extensively using these cloud computing models all around the world.

Each of them solves a specific set of problems. So, finding the right Cloud Deployment Model

for you or your company is important.

Here are points you should remember for selecting the right Cloud Deployment Model:

• Scalability: You need to check if your user activity is growing quickly or unpredictably

with spikes in demand.

• Privacy and security: Select a service provider that protects your privacy and the

security of your sensitive data.

• Cost: You must decide how many resources you need for your cloud solution. Then

calculate the approximate monthly cost for those resources with different cloud

providers.

• Ease of use: You must select a model with no steep learning curve.

• Legal Compliance: You need to check whether any relevant low stop you from

selecting any specific cloud deployment model.

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

Cloud Service Models

SaaS, PaaS, and IaaS are the three main cloud computing service model categories.

You can access all three via an Internet browser or online apps available on different devices.

The cloud service model enables the team to collaborate online instead of offline creation and

then share online.

Software as a Service (SaaS)

Software as a Service (SaaS) is a web-based deployment model that makes the software

accessible through a web browser. SaaS software users don’t need to care where the software

is hosted, which operating system it uses, or even which programming language it is written

in. The SaaS software is accessible from any device with an internet connection.

This cloud service model ensures that consumers always use the most current version

of the software. The SaaS provider handles maintenance and support. In the SaaS model, users

don’t control the infrastructure, such as storage, processing power, etc.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Characteristics of SaaS

There are the following characteristics of SaaS:

• It is managed from a central location.

• Hosted directly on a remote server.

• It is accessible over the Internet.

• SaaS users are not responsible for hardware and software updates.
CNCET

• The services are purchased on a pay-as-per-use basis.

Advantages SaaS

Here are the important advantages/pros of SaaS:

• The biggest benefit of using SaaS is that it is easy to set up, so you can start using it

instantly.

• Compared with on-premises software, it is more cost-effective.

• You don’t need to manage or upgrade the software, as it is typically included in a SaaS

subscription or purchase.

• It won’t use your local resources, such as the hard disk typically required to install

desktop software.

• It is a cloud computing service category that provides a wide range of hosted

capabilities and services.

• Developers can easily build and deploy web-based software applications.

• You can easily access it through a browser.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Disadvantages SaaS

Here are the important cons/drawbacks of SaaS:

• Integrations are up to the provider, so it’s impossible to “patch” an integration on your

end.

• SaaS tools may become incompatible with other tools and hardware already used in

your business.

• You depend on the SaaS company’s security measures, so your data may be

compromised if any leaks occur.

Consider Before SaaS Implementation

Need to consider before SaaS implementation:

• It would help if you opted for configuration over customization within a SaaS-based

delivery model.

• You must carefully understand the usage rates and set clear objectives to achieve the

SaaS adoption.
• You can complement your SaaS solution with integrations and security options to make

it more user-oriented.

Platform as a Service (PaaS)

CS3551 DISTRIBUTED COMPUTING

Platform-as-a-Service (PaaS) provides a cloud computing framework for software

application creation and deployment. It is a platform for the deployment and management of

software apps. This flexible cloud computing model scales up automatically on demand. It also

manages the servers, storage, and networking, while the developers manage only the

application part. It offers a runtime environment for application development and deployment

tools.

This Model provides all the facilities required to support the complex life cycle of

building and delivering web applications and services entirely for the Internet. This cloud

computing model enables developers to rapidly develop, run, and manage their apps without

building and maintaining the infrastructure or platform.

Characteristics of PaaS

There are the following characteristics of PaaS:

• Builds on virtualization technology, so computing resources can easily be scaled up

(Auto-scale) or down according to the organization’s need

• Integrates with web services and databases.

Advantages PaaS

Here are the important benefits/pros of PaaS:

• Simple, cost-effective development and deployment of apps

• Developers can customize SaaS apps without the headache of maintaining the software

• Provide automation of Business Policy

• Easy migration to the Hybrid Model

• It allows developers to build applications without the overhead of the underlying

operating system or cloud infrastructure

• Offers freedom to developers to focus on the application’s design while the platform

takes care of the language and the database

• It helps developers to collaborate with other developers on a single app

CS3551 DISTRIBUTED COMPUTING

Disadvantages of SaaS

Here are the important cons/drawbacks of PaaS:

• You have control over the app’s code and not its infrastructure.

• The PaaS organization stores your data, so it sometimes poses a security risk to your

app’s users.

• Vendors provide varying service levels, so selecting the right services is essential.

• The risk of lock-in with a vendor may affect the ecosystem you need for your

development environment.

Consider Before PaaS Implementation

Here are essential things you need to consider before PaaS implementation:

• Analyze your business needs, decide the automation levels, and also decides whether

you want a self-service or fully automated PaaS model.

• You need to determine whether to deploy on a private or public cloud.

• Plan through the customization and efficiency levels.
CNCET

Infrastructure as a Service (IaaS)

Infrastructure-as-a-Service (IaaS) is a cloud computing service offering on-demand

computing, storage, and networking resources. It usually works on a pay-as-you-go basis.

Organizations can purchase resources on-demand and as needed instead of buying the

hardware outright.

The IaaS cloud vendor hosts the infrastructure components, including the on-premises

data center, servers, storage, networking hardware, and the hypervisor (virtualization layer).

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

This Model contains the basic building blocks for your web application. It provides

complete control over the hardware that runs your application (storage, servers, VMs, networks

& operating systems). IaaS model gives you the best flexibility and management control over

your IT resources.

Characteristics of IaaS

There are the following characteristics of IaaS:

• Resources are available as a service

• Services are highly scalable

• Dynamic and flexible Cloud Service Model

• GUI and API-based access

• Automate the administrative tasks

Advantages of IaaS

Here are the important benefits/pros of PaaS:

• Hardware purchases can be based on consumption.

• Clients keep complete control of their underlying infrastructure.

• The provider can deploy the resources to a customer’s environment anytime.

• It can be scaled up or downsized according to your needs.

Disadvantages of IaaS

Here are the important Cons/drawbacks of IaaS:

• You should ensure that your apps and operating systems are working correctly and

providing the utmost security.

• You’re in charge of the data, so if any of it is lost, it’s up to you to recover it.

• IaaS firms only provide the servers and API, so you must configure everything else.

CS3551 DISTRIBUTED COMPUTING

Consider Before IaaS Implementation

Here are some specific considerations you should remember before IaaS Implementation:

• You should clearly define your access needs and your network’s bandwidth to

facilitate smooth implementation and functioning.

• Plan out detailed data storage and security strategy to streamline the business process.

• Ensure that your organization has a proper disaster recovery plan to keep your data

safe and accessible.

How can select the Best SaaS Service Provider

Here are some essential criteria for selecting the best cloud service provider:

• Financial stability: Look for a well-financed cloud provider that has steady profits

from the infrastructure. If the company shuts down because of monetary issues, your

solutions will also be in jeopardy.

• Industries that prefer the solution: Before finalizing cloud services, examine its

existing clients and markets. Your cloud service provider should be popular among

• Datacenter locations: To avoid safety risks, ensure that cloud providers enable your

data’s geographical distribution.

• Encryption standards: You should make sure the cloud provider supports major

encryption algorithms.

• Check accreditation and auditing: The widely used online auditing standard is

SSAE. This procedure helps you to verify the safety of online data storage. ISO

27001 certificate verifies that a cloud provider complies with international safety

standards for data storage.

• Backup: The provider should support incremental backups so that you can store

offsite and quickly restore.

Driving Factors and Challenges of Cloud

Data Security and Privacy

Data security is a major concern when switching to cloud computing. User or

organizational data stored in the cloud is critical and private. Even if the cloud service provider

CS3551 DISTRIBUTED COMPUTING

assures data integrity, it is your responsibility to carry out user authentication and

authorization, identity management, data encryption, and access control. Security issues on the

cloud include identity theft, data breaches, malware infections, and a lot more which eventually

decrease the trust amongst the users of your applications. This can in turn lead to potential loss

in revenue alongside reputation and stature. Also, dealing with cloud computing requires

sending and receiving huge amounts of data at high speed, and therefore is susceptible to data

leaks.

Cost Management

Even as almost all cloud service providers have a “Pay As You Go” model, which

reduces the overall cost of the resources being used, there are times when there are huge costs

incurred to the enterprise using cloud computing. When there is under optimization of the

resources, let’s say that the servers are not being used to their full potential, add up to the

hidden costs. If there is a degraded application performance or sudden spikes or overages in

the usage, it adds up to the overall cost. Unused resources are one of the other main reasons

why the costs go up. If you turn on the services or an instance of cloud and forget to turn it off

during the weekend or when there is no current use of it, it will increase the cost without even
CNCET

using the resources.

Multi-Cloud Environments

Due to an increase in the options available to the companies, enterprises not only use a

single cloud but depend on multiple cloud service providers. Most of these companies use

hybrid cloud tactics and close to 84% are dependent on multiple clouds. This often ends up

being hindered and difficult to manage for the infrastructure team. The process most of the

time ends up being highly complex for the IT team due to the differences between multiple

cloud providers.

Performance Challenges

Performance is an important factor while considering cloud-based solutions. If the

performance of the cloud is not satisfactory, it can drive away users and decrease profits. Even

a little latency while loading an app or a web page can result in a huge drop in the percentage

of users. This latency can be a product of inefficient load balancing, which means that the

server cannot efficiently split the incoming traffic so as to provide the best user experience.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Challenges also arise in the case of fault tolerance, which means the operations continue as

required even when one or more of the components fail.

Interoperability and Flexibility

When an organization uses a specific cloud service provider and wants to switch to

another cloud-based solution, it often turns up to be a tedious procedure since applications

written for one cloud with the application stack are required to be re-written for the other cloud.

There is a lack of flexibility from switching from one cloud to another due to the complexities

involved. Handling data movement, setting up the security from scratch and network also add

up to the issues encountered when changing cloud solutions, thereby reducing flexibility.

High Dependence on Network

Since cloud computing deals with provisioning resources in real-time, it deals with

enormous amounts of data transfer to and from the servers. This is only made possible due to

the availability of the high-speed network. Although these data and resources are exchanged

over the network, this can prove to be highly vulnerable in case of limited bandwidth or cases

when there is a sudden outage.

. It is therefore a major challenge for smaller enterprises that have to maintain network

bandwidth that comes with a high cost.

Lack of Knowledge and Expertise

Due to the complex nature and the high demand for research working with the cloud

often ends up being a highly tedious task. It requires immense knowledge and wide expertise

on the subject. Although there are a lot of professionals in the field they need to constantly

update themselves. Cloud computing is a highly paid job due to the extensive gap between

demand and supply. There are a lot of vacancies but very few talented cloud engineers,

developers, and professionals. Therefore, there is a need for upskilling so these professionals

can actively understand, manage and develop cloud-based applications with minimum issues

and maximum reliability.

CS3551 DISTRIBUTED COMPUTING

Virtualization

Virtualization is a technique how to separate a service from the underlying physical

delivery of that service. It is the process of creating a virtual version of something like

mputer hardware. It was initially developed during the mainframe era. It involves using

specialized software to create a virtual or software-created version of a computing resource

rather than the actual version of the same resource. With the help of Virtualization, multiple

operating systems and applications can run on the same machine and its same hardware at the

same time, increasing the utilization and flexibility of hardware.

Host Machine: The machine on which the virtual machine is going to be built is known as Host

Machine.

Guest Machine: The virtual machine is referred to as a Guest Machine.

Virtualization has a prominent impact on Cloud Computing. In the case of cloud

computing, users store data in the cloud, but with the help of Virtualization, users have the

extra benefit of sharing the infrastructure. Cloud Vendors take care of the required physical

resources, but these cloud providers charge a huge amount for these services which impacts

every user or organization. Virtualization helps Users or Organisations in maintaining those

services which are required by a company through external (third-party) people, which helps

in reducing costs to the company. This is the way through which Virtualization works in Cloud

Computing.

Benefits of Virtualization

• More flexible and efficient allocation of resources.

CS3551 DISTRIBUTED COMPUTING

• Enhance development productivity.

• It lowers the cost of IT infrastructure.

• Remote access and rapid scalability.

• High availability and disaster recovery.

• Pay peruse of the IT infrastructure on demand.

• Enables running multiple operating systems.

Drawback of Virtualization

• High Initial Investment: Clouds have a very high initial investment, but it is also true

that it will help in reducing the cost of companies.

• Learning New Infrastructure: As the companies shifted from Servers to Cloud, it

requires highly skilled staff who have skills to work with the cloud easily, and for this,

you have to hire new staff or provide training to current staff.

• Risk of Data: Hosting data on third-party resources can lead to putting the data at risk,

it has the chance of getting attacked by any hacker or cracker very easily.

Characteristics of Virtualization

CNCET

• Increased Security: The ability to control the execution of a guest program in a

completely transparent manner opens new possibilities for delivering a secure,

controlled execution environment. All the operations of the guest programs are

generally performed against the virtual machine, which then translates and applies them

to the host programs.

• Managed Execution: In particular, sharing, aggregation, emulation, and isolation are

the most relevant features.

• Sharing: Virtualization allows the creation of a separate computing environment

within the same host.

• Aggregation: It is possible to share physical resources among several guests, but

virtualization also allows aggregation, which is the opposite process.

Types of Virtualization

1. Application Virtualization

2. Network Virtualization

3. Desktop Virtualization

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

4. Storage Virtualization

5. Server Virtualization

6. Data virtualization

1. Application Virtualization:

Application virtualization helps a user to have remote access to an application from a

server. The server stores all personal information and other characteristics of the application

but can still run on a local workstation through the internet. An example of this would be a

user who needs to run two different versions of the same software. Technologies that use

application virtualization are hosted applications and packaged applications.

2. Network Virtualization:

The ability to run multiple virtual networks with each having a separate control and

data plan. It co-exists together on top of one physical network. It can be managed by individual

parties that are potentially confidential to each other. Network virtualization provides a facility

to create and provision virtual networks, logical switches, routers, firewalls, load balancers,

Virtual Private Networks (VPN),

3. Desktop Virtualization:

Desktop virtualization allows the users’ OS to be remotely stored on a server in the

data center. It allows the user to access their desktop virtually, from any location by a different

machine. Users who want specific operating systems other than Windows Server will need to

have a virtual desktop. The main benefits of desktop virtualization are user mobility,

portability, and easy management of software installation, updates, and patches.

4. Storage Virtualization:

Storage virtualization is an array of servers that are managed by a virtual storage

system. The servers aren’t aware of exactly where their data is stored and instead function

more like worker bees in a hive. It makes managing storage from multiple sources be managed

and utilized as a single repository. storage virtualization software maintains smooth operations,

consistent performance, and a continuous suite of advanced functions despite changes, breaks

down, and differences in the underlying equipment.

CS3551 DISTRIBUTED COMPUTING

5. Server Virtualization:

This is a kind of virtualization in which the masking of server resources takes place.

Here, the central server (physical server) is divided into multiple different virtual servers by

changing the identity number, and processors. So, each system can operate its operating

systems in an isolated manner. Where each sub-server knows the identity of the central server.

It causes an increase in performance and reduces the operating cost by the deployment of main

server resources into a sub-server resource. It’s beneficial in virtual migration, reducing energy

consumption, reducing infrastructural costs, etc.

6. Data Virtualization:

This is the kind of virtualization in which the data is collected from various sources and

managed at a single place without knowing more about the technical information like how data

is collected, stored & formatted then arranged that data logically so that its virtual view can be

accessed by its interested people and stakeholders, and users through the various cloud services

remotely. Many big giant companies are providing their services like Oracle, IBM, At scale,

Cdata, etc.

Load Balancing

Load balancing is the method that allows you to have a proper balance of the amount

of work being done on different pieces of device or hardware equipment. Typically, what

happens is that the load of the devices is balanced between different servers or between the

CPU and hard drives in a single cloud server.

Load balancing was introduced for various reasons. One of them is to improve the

speed and performance of each single device, and the other is to protect individual devices

from hitting their limits by reducing their performance.

Cloud load balancing is defined as dividing workload and computing properties in

cloud computing. It enables enterprises to manage workload demands or application demands

by distributing resources among multiple computers, networks or servers. Cloud load

balancing involves managing the movement of workload traffic and demands over the Internet.

Traffic on the Internet is growing rapidly, accounting for almost 100% of the current

traffic annually. Therefore, the workload on the servers is increasing so rapidly, leading to

CS3551 DISTRIBUTED COMPUTING

overloading of the servers, mainly for the popular web servers. There are two primary solutions

to overcome the problem of overloading on the server-

First is a single-server solution in which the server is upgraded to a higher-performance

server. However, the new server may also be overloaded soon, demanding another upgrade.

Moreover, the upgrading process is arduous and expensive.

The second is a multiple-server solution in which a scalable service system on a cluster

of servers is built. That's why it is more cost-effective and more scalable to build a server

cluster system for network services.

Cloud-based servers can achieve more precise scalability and availability by using farm

server load balancing. Load balancing is beneficial with almost any type of service, such as

HTTP, SMTP, DNS, FTP, and POP/IMAP.

It also increases reliability through redundancy. A dedicated hardware device or

program provides the balancing service.

Different Types of Load Balancing Algorithms in Cloud Computing:

1. Static Algorithm

Static algorithms are built for systems with very little variation in load. The entire

traffic is divided equally between the servers in the static algorithm. This algorithm requires

in-depth knowledge of server resources for better performance of the processor, which is

determined at the beginning of the implementation.

However, the decision of load shifting does not depend on the current state of the

system. One of the major drawbacks of static load balancing algorithm is that load balancing

tasks work only after they have been created. It could not be implemented on other devices for

load balancing.

2. Dynamic Algorithm

The dynamic algorithm first finds the lightest server in the entire network and gives it

priority for load balancing. This requires real-time communication with the network which can

help increase the system's traffic. Here, the current state of the system is used to control the

load.

CS3551 DISTRIBUTED COMPUTING

The characteristic of dynamic algorithms is to make load transfer decisions in the

current system state. In this system, processes can move from a highly used machine to an

underutilized machine in real time.

3. Round Robin Algorithm

Round robin load balancing algorithm uses round-robin method to assign jobs. First, it

randomly selects the first node and assigns tasks to other nodes in a round-robin manner. This

is one of the easiest methods of load balancing.

Processors assign each process circularly without defining any priority. It gives fast

response in case of uniform workload distribution among the processes. All processes have

different loading times. Therefore, some nodes may be heavily loaded, while others may

remain under-utilised.

4. Weighted Round Robin Load Balancing Algorithm

Weighted Round Robin have been developed to enhance the most challenging issues

of Round Robin Algorithms. In this algorithm, there are a specified set of weights and

functions, which are distributed according to the weight values.

Processors that have a higher capacity are given a higher value. Therefore, the highest

loaded servers will get more tasks. When the full load level is reached, the servers will receive

stable traffic.

5. Opportunistic Load Balancing Algorithm

The opportunistic load balancing algorithm allows each node to be busy. It never

considers the current workload of each system. Regardless of the current workload on each

node, OLB distributes all unfinished tasks to these nodes.

The processing task will be executed slowly as an OLB, and it does not count the

implementation time of the node, which causes some bottlenecks even when some nodes are

free.

CS3551 DISTRIBUTED COMPUTING

6. Minimum to Minimum Load Balancing Algorithm

Under minimum to minimum load balancing algorithms, first of all, those tasks take

minimum time to complete. Among them, the minimum value is selected among all the

functions. According to that minimum time, the work on the machine is scheduled.

Other tasks are updated on the machine, and the task is removed from that list. This

process will continue till the final assignment is given. This algorithm works best where many

small tasks outweigh large tasks.

Load balancing solutions can be categorized into two types -

Software-based load balancers: Software-based load balancers run on standard hardware

(desktop, PC) and standard operating systems.

Hardware-based load balancers: Hardware-based load balancers are dedicated boxes that

contain application-specific integrated circuits (ASICs) optimized for a particular use. ASICs

allow network traffic to be promoted at high speeds and are often used for transport-level load

balancing because hardware-based load balancing is faster than a software solution.

CNCET

Major Examples of Load Balancers

Direct Routing Request Despatch Technique: This method of request dispatch is similar to

that implemented in IBM's NetDispatcher. A real server and load balancer share a virtual IP

address. The load balancer takes an interface built with a virtual IP address that accepts request

packets and routes the packets directly to the selected server.

Dispatcher-Based Load Balancing Cluster: A dispatcher performs smart load balancing

using server availability, workload, capacity and other user-defined parameters to regulate

where TCP/IP requests are sent. The dispatcher module of a load balancer can split HTTP

requests among different nodes in a cluster. The dispatcher divides the load among multiple

servers in a cluster, so services from different nodes act like a virtual service on only one IP

address; Consumers interconnect as if it were a single server, without knowledge of the back-

end infrastructure.

Linux Virtual Load Balancer: This is an open-source enhanced load balancing solution used

to build highly scalable and highly available network services such as HTTP, POP3, FTP,

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

SMTP, media and caching, and Voice over Internet Protocol (VoIP) is done. It is a simple and

powerful product designed for load balancing and fail-over. The load balancer itself is the

primary entry point to the server cluster system. It can execute Internet Protocol Virtual Server

(IPVS), which implements transport-layer load balancing in the Linux kernel, also known as

layer-4 switching.

Types of Load Balancing

Network Load Balancing

Cloud load balancing takes advantage of network layer information and leaves it to

decide where network traffic should be sent. This is accomplished through Layer 4 load

balancing, which handles TCP/UDP traffic. It is the fastest local balancing solution, but it

cannot balance the traffic distribution across servers.

HTTP(S) load balancing

HTTP(s) load balancing is the oldest type of load balancing, and it relies on Layer 7.

This means that load balancing operates in the layer of operations. It is the most flexible type

Internal Load Balancing

It is very similar to network load balancing, but is leveraged to balance the

infrastructure internally.

Load balancers can be further divided into hardware, software and virtual load

balancers.

Hardware Load Balancer

It depends on the base and the physical hardware that distributes the network and

application traffic. The device can handle a large traffic volume, but these come with a hefty

price tag and have limited flexibility.

CS3551 DISTRIBUTED COMPUTING

Software Load Balancer

It can be an open source or commercial form and must be installed before it can be

used. These are more economical than hardware solutions.

Virtual Load Balancer

It differs from a software load balancer in that it deploys the software to the hardware

load-balancing device on the virtual machine.

WHY CLOUD LOAD BALANCING IS IMPORTANT IN CLOUD COMPUTING?

Here are some of the importance of load balancing in cloud computing.

Offers better performance

The technology of load balancing is less expensive and also easy to implement. This

allows companies to work on client applications much faster and deliver better results at a

lower cost.

Helps Maintain Website Traffic

Cloud load balancing can provide scalability to control website traffic. By using

effective load balancers, it is possible to manage high-end traffic, which is achieved using

network equipment and servers. E-commerce companies that need to deal with multiple

visitors every second use cloud load balancing to manage and distribute workloads.

Can Handle Sudden Bursts in Traffic

Load balancers can handle any sudden traffic bursts they receive at once. For example,

in case of university results, the website may be closed due to too many requests. When one

uses a load balancer, he does not need to worry about the traffic flow. Whatever the size of the

traffic, load balancers will divide the entire load of the website equally across different servers

and provide maximum results in minimum response time.

Greater Flexibility

The main reason for using a load balancer is to protect the website from sudden crashes.

When the workload is distributed among different network servers or units, if a single node

CS3551 DISTRIBUTED COMPUTING

fails, the load is transferred to another node. It offers flexibility, scalability and the ability to

handle traffic better. Because of these characteristics, load balancers are beneficial in cloud

environments. This is to avoid heavy workload on a single server.

CNCET

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Scalability and Elasticity

Cloud Elasticity

Elasticity refers to the ability of a cloud to automatically expand or compress the

infrastructural resources on a sudden up and down in the requirement so that the workload can

be managed efficiently. This elasticity helps to minimize infrastructural costs. This is not

applicable for all kinds of environments, it is helpful to address only those scenarios where the

resource requirements fluctuate up and down suddenly for a specific time interval. It is not

quite practical to use where persistent resource infrastructure is required to handle the heavy

workload.

The Flexibility in cloud is a well-known highlight related with scale-out arrangements

(level scaling), which takes into consideration assets to be powerfully added or eliminated

when required. It is for the most part connected with public cloud assets which is generally

highlighted in pay-per-use or pay-more only as costs arise administrations.

Example: Consider an online shopping site whose transaction workload increases during

festive season like Christmas. So for this specific period of time, the resources need a spike up.

In order to handle this kind of situation, we can go for a Cloud-Elasticity service rather than

Cloud Scalability. As soon as the season goes out, the deployed resources can then be requested

for withdrawal.

Cloud Scalability

Cloud scalability is used to handle the growing workload where good performance is

also needed to work efficiently with software or applications. Scalability is commonly used

where the persistent deployment of resources is required to handle the workload statically.

Example: Consider you are the owner of a company whose database size was small in earlier

days but as time passed your business does grow and the size of your database also increases,

so in this case you just need to request your cloud service vendor to scale up your database

capacity to handle a heavy workload.

CS3551 DISTRIBUTED COMPUTING

CNCET

It is totally different from what you have read above in Cloud Elasticity. Scalability is used to

fulfill the static needs while elasticity is used to fulfill the dynamic need of the organization.

Scalability is a similar kind of service provided by the cloud where the customers have to pay-

per-use. So, in conclusion, we can say that Scalability is useful where the workload remains

high and increases statically.

Types of Scalability

1. Vertical Scalability (Scale-up)

In this type of scalability, increase the power of existing resources in the working

environment in an upward direction.

2. Horizontal Scalability

In this kind of scaling, the resources are added in a horizontal row.

3. Diagonal Scalability

It is a mixture of both Horizontal and Vertical scalability where the resources are added

both vertically and horizontally.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Difference Between Cloud Elasticity and Scalability

 Cloud Elasticity Cloud Scalability

1

Elasticity is used just to meet

the sudden up and down in

the workload for a small

period of time.

Scalability is used to meet

the static increase in the

workload.

2

Elasticity is used to meet

dynamic changes, where the

resources need can increase

or decrease.

Scalability is always used

to address the increase in

workload in an

organization.

3

Elasticity is commonly used

by small companies whose

workload and demand

increases only for a specific

period of time.

Scalability is used by giant

companies whose

customer circle

persistently grows in order

to do the operations

efficiently.

4

It is a short term planning

and adopted just to deal with

an unexpected increase in

demand or seasonal

demands.

Scalability is a long term

planning and adopted just

to deal with an expected

increase in demand.

Replication

The simplest form of data replication in cloud computing environment is to store a copy

of a file (copy), in expanded form, the copying and pasting in any modern operating systems.

Replication is the reproduction of the original data in unchanged form. Changing data accesses

are expensive in general through replication. In the frequently encountered master / slave

replication, a distinction between the original data (primary data) and the dependent copies. In

CS3551 DISTRIBUTED COMPUTING

peer copies (version control) there must be merging of data sets (synchronization). Sometimes

it is important to know which data sets must have the replicas. Depending on the type of

replication it is located between the processing and creation of the primary data and their

replication in a certain period of time. This period is usually referred to as latency.

Array-Based Data Replication

An array-based data replication strategy uses built-in software to automatically

replicate data. With this type of data replication, the software is used in compatible storage

arrays to copydata between each. Using this method has several advantages and disadvantages.

Advantages:

• More robust

• Requires less coordination when deployed

• The work gets offloaded from the servers to the storage device

Disadvantages:

• It is costly to implement

Host-Based Data Replication

Host-based data replication uses the servers to copy data from one site to another site.

Host-based replication software usually includes options like compression, encryption and,

throttling, as well as failover. Using this method has several advantages and disadvantages.

Advantages:

• Flexible: It can leverage existing IP networks

• Can be customized to your business’ needs: You can choose what data to replicate

• Can create a schedule for sending data: allows you to throttle bandwidth

• Can use any combination of storage devices on each end

CS3551 DISTRIBUTED COMPUTING

Disadvantages:

• Difficult to manage with a large group of servers if there is no centralized management

console

• Consumes host resources during replication

• Both storage devices on each end need to be active, which means you will need to

purchase dedicated hardware and OS

• Not all applications can support this type of data replication

• Can be affected by viruses or application failure

• Host-based replication offers the safest option if a business is looking for close to zero

impact on operations after a disaster.

Network-Based Data Replication

Network-based data replication uses a device or appliance that sits on the network in

the path of the data to manage replication. The data is then copied to a second device. These

devices usually have proprietary replication technology but can be used with any host server

and storage hardware.

Advantages

• Effective in large, heterogeneous storage and server environments

• Supports any host platform and works with any array

• Works separately from the servers and the storage devices

• Allows replication between multi-vendor products

Disadvantages:

• Higher initial set-up cost because it requires proprietary hardware, as well as ongoing

operational and management costs

• Requires implementation of a storage area network (SAN)

Monitoring

Cloud monitoring is a method of reviewing, observing, and managing the operational

workflow in a cloud-based IT infrastructure. Manual or automated management techniques

confirm the availability and performance of websites, servers, applications, and other cloud

CS3551 DISTRIBUTED COMPUTING

infrastructure. This continuous evaluation of resource levels, server response times, and speed

predicts possible vulnerability to future issues before they arise.

This technique tracks multiple analytics simultaneously, monitoring storage resources

and processes that are provisioned to virtual machines, services, databases, and applications.

This technique is often used to host infrastructure-as-a-service (IaaS) and software-as-a-service

(SaaS) solutions. For these applications, you can configure monitoring to track performance

metrics, processes, users, databases, and available storage. It provides data to help you focus

on useful features or to fix bugs that disrupt functionality.

Monitoring is a skill, not a full-time job. In today’s world of cloud-based architectures

that are implemented through DevOps projects, developers, site reliability engineers (SREs),

and operations staff must collectively define an effective cloud monitoring strategy. Such a

strategy should focus on identifying when service-level objectives (SLOs) are not being met,

likely negatively affecting the user experience. So, then what are the benefits of leveraging

cloud monitoring tools? With cloud monitoring:

Benefits of cloud monitoring

CNCET

• Scaling for increased activity is seamless and works in organizations of any size

• Dedicated tools (and hardware) are maintained by the host

• Tools are used across several types of devices, including desktop computers, tablets,

and phones, so your organization can monitor apps from any location

• Installation is simple because infrastructure and configurations are already in place

• Your system doesn’t suffer interruptions when local problems emerge, because

resources aren’t part of your organization’s servers and workstations

• Subscription-based solutions can keep your costs low

Cloud monitoring is primarily part of cloud security and management processes. It is

normally implemented through automated monitoring software that provides central access

and control over cloud infrastructure.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Cloud Services and Platforms

Cloud Reference Model

• Infrastructure & Facilities Layer

Includes the physical infrastructure such as datacenter facilities, electrical and

mechanical equipment, etc.

• Hardware Layer

Includes physical compute, network and storage hardware.

• Virtualization Layer

Partitions the physical hardware resources into multiple virtual resources that enabling

pooling of resources.

• Platform & Middleware Layer

Tabase service, queuing service, application frameworks and run-time environments,

messaging services, monitoring services, analytics services, etc.

• Service Management Layer

Provides APIs for requesting, managing and monitoring cloud resources.

• Applications Layer

Includes SaaS applications such as Email, cloud storage application, productivity

applications, management portals, customer self-service portals, etc.

• Infrastructure & Facilities Layer

Includes the physical infrastructure such as datacenter facilities, electrical and

mechanical equipment, etc.

• Hardware Layer

Includes physical compute, network and storage hardware.

CS3551 DISTRIBUTED COMPUTING

CNCET

Compute Service

• Compute services provide dynamically scalable compute capacity in the cloud.

• Compute resources can be provisioned on-demand in the form of virtual machines.

Virtual machines can be created from standard images provided by the cloud service

provider or custom images created by the users.

• Compute services can be accessed from the web consoles of these services that provide

graphical user interfaces for provisioning, managing and monitoring these services.

• Cloud service providers also provide APIs for various programming languages that

allow developers to access and manage these services programmatically.

Compute Service - Amazon EC2

• Amazon Elastic Compute Cloud (EC2) is a compute service provided by Amazon.

• Launching EC2 Instances

To launch a new instance click on the launch instance button. This will open a

wizard where you can select the Amazon machine image (AMI) with which you want

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

to launch the instance. You can also create their own AMIs with custom applications,

libraries and data. Instances can be launched with a variety of operating systems.

• Instance Sizes

When you launch an instance you specify the instance type (micro, small,

medium, large, extra-large, etc.), the number of instances to launch based on the

selected AMI and availability zones for the instances.

• Key-pairs

When launching a new instance, the user selects a key-pair from existing

keypairs or creates a new keypair for the instance. Keypairs are used to securely

connect to an instance after it launches.

• Security Groups

The security groups to be associated with the instance can be selected from the

instance launch wizard. Security groups are used to open or block a specific network

port for the launched instances.

Compute Services – Google Compute Engine

• Google Compute Engine is a compute service provided by Google.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

• Launching Instances

To create a new instance, the user selects an instance machine type, a zone in which

the instance will be launched, a machine image for the instance and provides an instance name,

instance tags and meta-data.

• Disk Resources

Every instance is launched with a disk resource. Depending on the instance type, the

disk resource can be a scratch disk space or persistent disk space. The scratch disk space is

deleted when the instance terminates. Whereas, persistent disks live beyond the life of an

instance.

• Network Options

Network option allows you to control the traffic to and from the instances. By default,

traffic between instances in the same network, over any port and any protocol and incoming

SSH connections from anywhere are enabled.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

Compute Services – Windows Azure VMs

• Windows Azure Virtual Machines is the compute service from Microsoft.

• Launching Instances:

o To create a new instance, you select the instance type and the machine image.

o You can either provide a user name and password or upload a certificate file for

securely connecting to the instance.

o Any changes made to the VM are persistently stored and new VMs can be

created from the previously stored machine images.

Storage Services

• Cloud storage services allow storage and retrieval of any amount of data, at any time

from anywhere on the web.

• Most cloud storage services organize data into buckets or containers.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

• Scalability

Cloud storage services provide high capacity and scalability. Objects upto several

tera-bytes in size can be uploaded and multiple buckets/containers can be created on cloud

storages.

• Replication

When an object is uploaded it is replicated at multiple facilities and/or on multiple

devices within each facility.

• Access Policies

Cloud storage services provide several security features such as Access Control

Lists (ACLs), bucket/container level policies, etc. ACLs can be used to selectively grant

access permissions on individual objects. Bucket/container level policies can also be

defined to allow or deny permissions across some or all of the objects within a single

bucket/container.

• Encryption

Cloud storage services provide Server Side Encryption (SSE) options to encrypt all

data stored in the cloud storage.

• Consistency

Strong data consistency is provided for all upload and delete operations. Therefore,

any object that is uploaded can be immediately downloaded after the upload is complete.

Storage Services – Amazon S3

• Amazon Simple Storage Service(S3) is an online cloud-based data storage

infrastructure for storing and retrieving any amount of data.

• S3 provides highly reliable, scalable, fast, fully redundant and affordable storage

infrastructure.

• Buckets

- Data stored on S3 is organized in the form of buckets. You must create a bucket

before you can store data on S3.

CS3551 DISTRIBUTED COMPUTING

• Uploading Files to Buckets

- S3 console provides simple wizards for creating a new bucket and uploading files.

- You can upload any kind of file to S3.

- While uploading a file, you can specify the redundancy and encryption options and

access permissions.

Storage Services – Google Cloud Storage

• GCS is the Cloud storage service from Google

• Buckets

Objects in GCS are organized into buckets.

• Access Control Lists CNCET

ACLs are used to control access to objects and buckets. ACLs can be configured

to share objects and buckets with the entire world, a Google group, a Google-hosted

domain, or specific Google account holders.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

CNCET

Storage Services – Windows Azure Storage

• Windows Azure Storage is the cloud storage service from Microsoft.

• Windows Azure Storage provides various storage services such as blob storage service,

table service and queue service.

• Blob storage service

o The blob storage service allows storing unstructured binary data or binary large

objects (blobs).

o Blobs are organized into containers.

o Block blobs - can be subdivided into some number of blocks. If a failure occurs

while transferring a block blob, retransmission can resume with the most recent

block rather than sending the entire blob again.

o Page blobs - are divided into number of pages and are designed for random

access. Applications can read and write individual pages at random in a page

blob.

http://www.enggtree.com/

CS3551 DISTRIBUTED COMPUTING

Application Runtimes & Frameworks

• Cloud-based application runtimes and frameworks allow developers to develop and

host applications in the cloud.

• Support for various programming languages

Application runtimes provide support for programming languages (e.g., Java,

Python, or Ruby).

• Resource Allocation

Application runtimes automatically allocate resources for applications and

handle the application scaling, without the need to run and maintain servers.

Google App Engine

• Google App Engine is the platform-as-a-service (PaaS) from Google, which includes

both an application runtime and web frameworks.

• Runtimes

- App Engine provides runtime environments for Java, Python, PHP and Go

programming language.

• Sandbox

- Applications run in a secure sandbox environment isolated from other applications.

- The sandbox environment provides a limited access to the underlying operating

system.

CS3551 DISTRIBUTED COMPUTING

• Web Frameworks

- App Engine provides a simple Python web application framework called webapp2.

App Engine also supports any framework written in pure Python that speaks WSGI,

including Django, CherryPy, Pylons, web.py, and web2py.

• Datastore

- App Engine provides a no-SQL data storage service

• Authentication

- App Engine applications can be integrated with Google Accounts for user

authentication.

• URL Fetch service

- URL Fetch service allows applications to access resources on the Internet, such as

web services or other data.

• Other services

- Email service

- Image Manipulation service

- Memcache

- Task Queues

- Scheduled Tasks service

Windows Azure Web Sites

• Windows Azure Web Sites is a Platform-as-a-Service (PaaS) from Microsoft.

• Azure Web Sites allows you to host web applications in the Azure cloud.

• Shared & Standard Options.

- In the shared option, Azure Web Sites run on a set of virtual machines that may

contain multiple web sites created by multiple users.

- In the standard option, Azure Web Sites run on virtual machines (VMs) that belong

to an individual user.

• Azure Web Sites supports applications created in ASP.NET, PHP, Node.js and Python

programming languages.

• Multiple copies of an application can be run in different VMs, with Web Sites

automatically load balancing requests across them.

